Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 74(8): 2505-10, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18296536

ABSTRACT

Here we introduce a method for quantitative analysis of planktonic protists and microalgae from preserved field samples combining morphological and small-subunit (SSU) rRNA gene sequence analysis. We linked a microscopic screening with PCR of single cells using field samples preserved with Lugol's iodine solution. Cells possessing a rigid cell wall were incubated with Viscozyme and subsequently with proteinase K for cell disruption; this was unnecessary for fragile cells. The addition of sodium thiosulfate to the PCR tube considerably decreased the inhibiting effect of the fixative (iodine) on the PCR and thus allowed for successful single-cell PCR even of long DNA fragments (up to as many as 3,000 base pairs). We further applied the protocol to investigate the dominant SSU rRNA genotypes in distinct flagellate morphospecies originating from different samples. We hypothesized that despite the morphological similarity, protist morphospecies in different habitats or sampled during different seasons are represented by different genotypes. Our results indicate species-specific differences: the two species Ochromonas sp. and Dinobryon divergens were represented by several different genotypes each, and for the latter species, the dominating genotype differed with habitat. In contrast, Dinobryon pediforme, Dinobryon bavaricum, and Synura sphagnicola were exclusively represented by a single genotype each, and the respective genotype was the same in different samples. In summary, our results highlight the significance of molecular variation within protist morphospecies.


Subject(s)
Eukaryota/isolation & purification , Fixatives , Microscopy/methods , Plankton/isolation & purification , Polymerase Chain Reaction/methods , Animals , DNA, Algal/chemistry , DNA, Algal/genetics , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Eukaryota/cytology , Eukaryota/genetics , Genotype , Iodides , Molecular Sequence Data , Plankton/cytology , Plankton/genetics , Sequence Analysis, DNA
2.
Appl Environ Microbiol ; 72(8): 5159-64, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16885260

ABSTRACT

The possible existence of endemism among microorganisms resulting from and preserved by geographic isolation is one of the most controversial topics in microbial ecology. We isolated 31 strains of "Spumella-like" flagellates from remote sampling sites from all continents, including Antarctica. These and another 23 isolates from a former study were characterized morphologically and by small-subunit rRNA gene sequence analysis and tested for the maximum temperature tolerance. Only a minority of the Spumella morpho- and phylotypes from the geographically isolated Antarctic continent follow the worldwide trend of a linear correlation between ambient (air) temperature during strain isolation and heat tolerance of the isolates. A high percentage of the Antarctic isolates, but none of the isolates from locations on all other continents, were obligate psychrophilic, although some of the latter were isolated at low ambient temperatures. The drastic deviation of Antarctic representatives of Spumella from the global trend of temperature adaptation of this morphospecies provides strong evidence for geographic transport restriction of a microorganism; i.e., Antarctic protistan communities are less influenced by transport of protists to and from the Antarctic continent than by local adaptation, a subtle form of endemism.


Subject(s)
Acclimatization , Chrysophyta/classification , Chrysophyta/growth & development , Ecosystem , Soil Microbiology , Water Microbiology , Animals , Antarctic Regions , Chrysophyta/isolation & purification , Chrysophyta/physiology , DNA, Ribosomal/analysis , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 18S/genetics , Temperature , Tropical Climate
3.
Environ Microbiol ; 7(5): 685-97, 2005 May.
Article in English | MEDLINE | ID: mdl-15819851

ABSTRACT

We isolated 28 strains of 'Spumella-like' flagellates from different freshwater and soil habitats in Austria, People's Republic of China, Nepal, New Zealand, Uganda, Kenya, Tanzania and Hawaii by use of a modified filtration-acclimatization method. 'Spumella-like' flagellates were found in all of the samples and were often among the dominant bacterivorous flagellates in the respective environments. The small subunit ribosomal RNA (SSU rRNA) gene sequence of the isolates was determined and aligned with previously published sequences of members belonging to the Chrysophyceae sensu stricto. Phylogenetic analysis of the 28 new sequences confirmed their position within the Chrysophyceae sensu stricto and positioned them within different clades. Most of the sequences grouped within clade C and formed several subclusters separated from each other by green taxa including flagellates belonging to Ochromonas, Dinobryon, Poterioochromonas and others. All soil isolates clustered together (subcluster C1) with the soil strain Spumella elongata and the undescribed soil strain 'Spumella danica'. Aquatic isolates were affiliated with at least two branches (C2 and C3). Sequence similarity to the closest related member of the Chrysophyceae ranged between 92% and 99.6%, sequence divergence among the 'Spumella-like' flagellates was as high as 10%. We conclude that (i) the 'Spumella-like' flagellates are a diverse group both in terms of sequence dissimilarity between isolates and in terms of the number of genotypes, (ii) Spumella and Ochromonas are polyphyletic, and (iii) based on the SSU rRNA gene no biogeographical restriction of certain branches could be observed even though different ecotypes may be represented by the same genotype.


Subject(s)
Chrysophyta/classification , Chrysophyta/genetics , Soil Microbiology , Water Microbiology , Base Sequence , Chrysophyta/isolation & purification , DNA/chemistry , DNA/genetics , Genetic Variation , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/genetics , Sequence Alignment
4.
Aquat Toxicol ; 71(3): 249-59, 2005 Feb 10.
Article in English | MEDLINE | ID: mdl-15670631

ABSTRACT

Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to "wash" natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ("Spumella-like" flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0.001) but surface load seems to play a minor role and for nutritive organics no significant effect of the investigated particle properties was found. We conclude that: (i) flagellates are as sensitive as higher animals to heavy metal pollution; (ii) suspended particles decrease bioavailability of dissolved substances and ingestion of suspended particles probably play a minor role as uptake route for dissolved substances; and (iii) suspended sediment particle properties, i.e. surface charge and mineralogy, are key factors for the interaction between microorganisms and dissolved substances in the presence of suspended sediments.


Subject(s)
Aluminum Silicates/analysis , Chrysophyta/metabolism , Geologic Sediments/analysis , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Austria , Biological Availability , Chrysophyta/drug effects , Fresh Water , Lethal Dose 50 , Metals, Heavy/metabolism , Motor Activity/drug effects , No-Observed-Adverse-Effect Level , Organic Chemicals/metabolism , Organic Chemicals/pharmacokinetics , Surface Properties , Water Pollutants, Chemical/metabolism
5.
J Eukaryot Microbiol ; 51(6): 626-33, 2004.
Article in English | MEDLINE | ID: mdl-15666719

ABSTRACT

Current models on protistan size-selective feeding assume that contact probability is the factor that largely explains observed food preferences. Contact probability is generally expected to be positively correlated with prey size and therefore to explain observed food selection for larger prey items. We critically tested these basic assumptions on size-selective feeding using the interception-feeding chrysomonad nanoflagellates Ochromonas sp. and Spumella sp. Mechanisms of differential feeding were studied during distinct stages of the selection process (i.e. contact probability, capture efficiency, ingestion efficiency, and differential digestion) by means of high-resolution video microscopy. Food selection was investigated using a mixture of microspheres ranging from 0.3-2.2 microm in diam., as well as a mixed bacterial community. In contrast to current model assumptions, the contact probability was highest for microspheres of intermediate size (0.9-1.2 microm), but was not generally positively correlated with prey size over the whole prey size range. Capture and ingestion also proved to be involved in size selection: these patterns were also independent of the food concentration (p = 0.968 for Ochromonas, p = 0.971 for Spumella). Even though the capture rate was significantly higher for attached flagellates than for swimming flagellates (p < 0.001), size selectivity was not affected (p > 0.05). Our results indicate that: (i) size selection is not actively regulated by these flagellates, but is a passive process; (ii) contact probability is not generally positively correlated with prey size, but shows a maximum for intermediate-sized prey in the prey size spectrum of 0.3-2.2 microm; and (iii) selection steps other than contact probability are crucial for size selection and should be integrated in models on size selection.


Subject(s)
Eukaryota/physiology , Ochromonas/physiology , Animals , Bacteria/cytology , Feeding Behavior , Microscopy, Video , Microspheres , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...