Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4691, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824171

ABSTRACT

Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.


Subject(s)
Apoptosis , B-Lymphocytes , Clonal Deletion , Mice, Inbred C57BL , Animals , Apoptosis/immunology , Clonal Deletion/immunology , B-Lymphocytes/immunology , Mice , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Cell Differentiation/immunology , Bone Marrow/immunology , Female , Precursor Cells, B-Lymphoid/immunology
2.
Proc Natl Acad Sci U S A ; 120(48): e2309082120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37988472

ABSTRACT

The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when Escherichia coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This "iron" memory preexists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, which tracks with its iron memory, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We demonstrate that cellular iron levels also track with biofilm formation and antibiotic tolerance, suggesting that iron memory may impact other physiologies.


Subject(s)
Escherichia coli , Iron , Escherichia coli/genetics , Anti-Bacterial Agents
3.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37609133

ABSTRACT

The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when E. coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This memory pre-exists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, whether low or high, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We also demonstrate that iron memory can integrate multiple stimuli, impacting other bacterial behaviors such as biofilm formation and antibiotic tolerance.

4.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37502950

ABSTRACT

Autoreactive B cells generated during B cell development are inactivated by clonal deletion, receptor editing or anergy. Up to 97% of immature B cells appear to die before completing maturation, but the anatomic sites and reasons underlying this massive cell loss are not fully understood. Here, we directly quantitated apoptosis and clonal deletion during physiologic B lymphocyte development using Rosa26INDIA apoptosis indicator mice. Immature B cells displayed low levels of apoptosis in the bone marrow but started dying at high levels in the periphery upon release from bone marrow sinusoids into the blood circulation. Clonal deletion of self-reactive B cells was neither a major contributor to apoptosis in the bone marrow nor the periphery. Instead, most peripheral transitional 1 B cells did not encounter the signals required for positive selection into the mature B cell compartments. This study sheds new light on B cell development and suggests that receptor editing and/or anergy efficiently control most primary autoreactivity in mice.

5.
Mol Cell ; 82(22): 4368-4385.e6, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36400010

ABSTRACT

Efflux is a common mechanism of resistance to antibiotics. We show that efflux itself promotes accumulation of antibiotic-resistance mutations (ARMs). This phenomenon was initially discovered in a bacterial swarm where the linked phenotypes of high efflux and high mutation frequencies spatially segregated to the edge, driven there by motility. We have uncovered and validated a global regulatory network connecting high efflux to downregulation of specific DNA-repair pathways even in non-swarming states. The efflux-DNA repair link was corroborated in a clinical "resistome" database: genomes with mutations that increase efflux exhibit a significant increase in ARMs. Accordingly, efflux inhibitors decreased evolvability to antibiotic resistance. Swarms also revealed how bacterial populations serve as a reservoir of ARMs even in the absence of antibiotic selection pressure. High efflux at the edge births mutants that, despite compromised fitness, survive there because of reduced competition. This finding is relevant to biofilms where efflux activity is high.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Microbial , Biological Transport , Anti-Bacterial Agents/pharmacology , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...