Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14900, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689759

ABSTRACT

The atmospheric oxidation of biogenic volatile organic compounds (BVOC) by OH radicals over tropical rainforests impacts local particle production and the lifetime of globally distributed chemically and radiatively active gases. For the pristine Amazon rainforest during the dry season, we empirically determined the diurnal OH radical variability at the forest-atmosphere interface region between 80 and 325 m from 07:00 to 15:00 LT using BVOC measurements. A dynamic time warping approach was applied showing that median averaged mixing times between 80 to 325 m decrease from 105 to 15 min over this time period. The inferred OH concentrations show evidence for an early morning OH peak (07:00-08:00 LT) and an OH maximum (14:00 LT) reaching 2.2 (0.2, 3.8) × 106 molecules cm-3 controlled by the coupling between BVOC emission fluxes, nocturnal NOx accumulation, convective turbulence, air chemistry and photolysis rates. The results were evaluated with a turbulence resolving transport (DALES), a regional scale (WRF-Chem) and a global (EMAC) atmospheric chemistry model.

2.
Nat Commun ; 11(1): 447, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992702

ABSTRACT

Non-methane hydrocarbons (NMHCs) such as ethane and propane are significant atmospheric pollutants and precursors of tropospheric ozone, while the Middle East is a global emission hotspot due to  extensive oil and gas production. Here we compare in situ hydrocarbon measurements, performed around the Arabian Peninsula, with global model simulations that include current emission inventories (EDGAR) and state-of-the-art atmospheric circulation and chemistry mechanisms (EMAC model). While measurements of high mixing ratios over the Arabian Gulf are adequately simulated, strong underprediction by the model was found over the northern Red Sea. By examining the individual sources in the model and by utilizing air mass back-trajectory investigations and Positive Matrix Factorization (PMF) analysis, we deduce that Red Sea Deep Water (RSDW) is an unexpected, potent source of atmospheric NMHCs. This overlooked underwater source is comparable with total anthropogenic emissions from entire Middle Eastern countries, and significantly impacts the regional atmospheric chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...