Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 103, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229299

ABSTRACT

A novel peptidyl-lys metalloendopeptidase (Tc-LysN) from Tramates coccinea was recombinantly expressed in Komagataella phaffii using the native pro-protein sequence. The peptidase was secreted into the culture broth as zymogen (~38 kDa) and mature enzyme (~19.8 kDa) simultaneously. The mature Tc-LysN was purified to homogeneity with a single step anion-exchange chromatography at pH 7.2. N-terminal sequencing using TMTpro Zero and mass spectrometry of the mature Tc-LysN indicated that the pro-peptide was cleaved between the amino acid positions 184 and 185 at the Kex2 cleavage site present in the native pro-protein sequence. The pH optimum of Tc-LysN was determined to be 5.0 while it maintained ≥60% activity between pH values 4.5-7.5 and ≥30% activity between pH values 8.5-10.0, indicating its broad applicability. The temperature maximum of Tc-LysN was determined to be 60 °C. After 18 h of incubation at 80 °C, Tc-LysN still retained ~20% activity. Organic solvents such as methanol and acetonitrile, at concentrations as high as 40% (v/v), were found to enhance Tc-LysN's activity up to ~100% and ~50%, respectively. Tc-LysN's thermostability, ability to withstand up to 8 M urea, tolerance to high concentrations of organic solvents, and an acidic pH optimum make it a viable candidate to be employed in proteomics workflows in which alkaline conditions might pose a challenge. The nano-LC-MS/MS analysis revealed bovine serum albumin (BSA)'s sequence coverage of 84% using Tc-LysN which was comparable to the sequence coverage of 90% by trypsin peptides. KEY POINTS: •A novel LysN from Trametes coccinea (Tc-LysN) was expressed in Komagataella phaffii and purified to homogeneity •Tc-LysN is thermostable, applicable over a broad pH range, and tolerates high concentrations of denaturants •Tc-LysN was successfully applied for protein digestion and mass spectrometry fingerprinting.


Subject(s)
Polyporaceae , Saccharomycetales , Tandem Mass Spectrometry , Trametes , Metalloendopeptidases , Solvents
2.
Front Bioeng Biotechnol ; 11: 1228386, 2023.
Article in English | MEDLINE | ID: mdl-37609113

ABSTRACT

Introduction: B. velezensis strains are of interest in agricultural applications due to their beneficial interactions with plants, notable through their antimicrobial activity. The biocontrol ability of two new lipopeptides-producing B. velezensis strains ES1-02 and EFSO2-04, against fungal phytopathogens of Diaporthe spp., was evaluated and compared with reference strains QST713 and FZB42. All strains were found to be effective against the plant pathogens, with the new strains showing comparable antifungal activity to QST713 and slightly lower activity than FZB42. Methods: Lipopeptides and their isoforms were identified by high-performance thin-layer chromatography (HPTLC) and mass spectrometric measurements. The associated antifungal influences were determined in direct in vitro antagonistic dual culture assays, and the inhibitory growth effects on Diaporthe spp. as representatives of phytopathogenic fungi were determined. The effects on bacterial physiology of selected B. velezensis strains were analyzed by mass spectrometric proteomic analyses using nano-LC-MS/MS. Results and Discussion: Lipopeptide production analysis revealed that all strains produced surfactin, and one lipopeptide of the iturin family, including bacillomycin L by ES1-02 and EFSO2-04, while QST713 and FZB42 produced iturin A and bacillomycin D, respectively. Fengycin production was however only detected in the reference strains. As a result of co-incubation of strain ES1-02 with the antagonistic phytopathogen D. longicolla, an increase in surfactin production of up to 10-fold was observed, making stress induction due to competitors an attractive strategy for surfactin bioproduction. An associated global proteome analysis showed a more detailed overview about the adaptation and response mechanisms of B. velezensis, including an increased abundance of proteins associated with the biosynthesis of antimicrobial compounds. Furthermore, higher abundance was determined for proteins associated with oxidative, nitrosative, and general stress response. In contrast, proteins involved in phosphate uptake, amino acid transport, and translation were decreased in abundance. Altogether, this study provides new insights into the physiological adaptation of lipopeptide-producing B. velezensis strains, which show the potential for use as biocontrol agents with respect to phytopathogenic fungi.

3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769092

ABSTRACT

Wheat is of high importance for a healthy and sustainable diet for the growing world population, partly due to its high mineral content. However, several minerals are bound in a phytate complex in the grain and unavailable to humans. We performed a series of trials to compare the contents of minerals and phytic acid as well as phytase activity in several varieties from alternative wheat species spelt, emmer and einkorn with common wheat. Additionally, we investigated the potential of recent popular bread making recipes in German bakeries to reduce phytic acid content, and thus increase mineral bioavailability in bread. For all studied ingredients, we found considerable variance both between varieties within a species and across wheat species. For example, whole grain flours, particularly from emmer and einkorn, appear to have higher mineral content than common wheat, but also a higher phytic acid content with similar phytase activity. Bread making recipes had a greater effect on phytic acid content in the final bread than the choice of species for whole grain flour production. Recipes with long yeast proofing or sourdough and the use of whole grain rye flour in a mixed wheat bread minimized the phytic acid content in the bread. Consequently, optimizing food to better nourish a growing world requires close collaboration between research organizations and practical stakeholders ensuring a streamlined sustainable process from farm to fork.


Subject(s)
6-Phytase , Phytic Acid , Humans , Phytic Acid/metabolism , Flour , Bread , Triticum/metabolism , 6-Phytase/metabolism , Fermentation , Minerals/metabolism
4.
Methods Mol Biol ; 2581: 323-335, 2023.
Article in English | MEDLINE | ID: mdl-36413328

ABSTRACT

Many peptide hormones and growth factors in plants, particularly the small posttranslationally modified signaling peptides, are synthesized as larger precursor proteins. Proteolytic processing is thus required for peptide maturation, and additional posttranslational modifications may contribute to bioactivity. To what extent these posttranslational modifications impact on processing is largely unknown. Likewise, it is poorly understood how the cleavage sites within peptide precursors are selected by specific processing proteases, and whether or not posttranslational modifications contribute to cleavage site recognition. Here, we describe a mass spectrometry-based approach to address these questions. We developed a method using heavy isotope labeling to directly compare cleavage efficiency of different precursor-derived synthetic peptides by mass spectrometry. Thereby, we can analyze the effect of posttranslational modifications on processing and the specific sequence requirements of the processing proteases. As an example, we describe how this method has been used to assess the relevance of tyrosine sulfation for the processing of the Arabidopsis CIF4 precursor by the subtilase SBT5.4.


Subject(s)
Arabidopsis , Peptide Hormones , Peptide Hormones/metabolism , Protein Processing, Post-Translational , Signal Transduction , Arabidopsis/metabolism , Isotopes/metabolism , Peptide Hydrolases/metabolism
5.
Methods Mol Biol ; 2581: 337-349, 2023.
Article in English | MEDLINE | ID: mdl-36413329

ABSTRACT

A critical step in the functional characterization of proteases is the identification of physiologically relevant substrates, which often starts with a collection of candidate proteins. To test these candidates and identify specific processing sites, in vitro cleavage assays are typically used, followed by polyacrylamide gel electrophoresis (SDS-PAGE) to separate and visualize the cleavage products. For the identification of cleavage sites, the sequences at the N- or C-terminal ends of the cleavage products need to be identified, which is the most challenging step in this procedure. Here, we describe a method for the reliable identification of the N-termini of polypeptides after separation by SDS-PAGE. The procedure relies on in-gel labeling of the N-terminal-free amino group by reductive dimethylation, followed by tryptic digestion and analysis of resulting peptides by mass spectrometry. N-terminal peptides are readily identified by the 28 Da mass dimethyl tag linked to their first amino acid.


Subject(s)
Endopeptidases , Peptide Hydrolases , Electrophoresis, Polyacrylamide Gel , Amino Acids , Mass Spectrometry
6.
Microorganisms ; 10(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36363818

ABSTRACT

Bacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.

7.
Appl Microbiol Biotechnol ; 106(18): 6157-6167, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36038753

ABSTRACT

The production of biopharmaceuticals relies on robust cell systems that can produce recombinant proteins at high levels and grow and survive in the stressful bioprocess environment. Chinese hamster ovary cells (CHO) as the main production hosts offer a variety of advantages including robust growth and survival in a bioprocess environment. Cell surface proteins are of special interest for the understanding of how CHO cells react to their environment while maintaining growth and survival phenotypes, since they enable cellular reactions to external stimuli and potentially initiate signaling pathways. To provide deeper insight into functions of this special cell surface sub-proteome, pathway enrichment analysis of the determined CHO surfaceome was conducted. Enrichment of growth/ survival-pathways such as the phosphoinositide-3-kinase (PI3K)-protein kinase B (AKT), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK-STAT), and RAP1 pathways were observed, offering novel insights into how cell surface receptors and ligand-mediated signaling enable the cells to grow and survive in a bioprocess environment. When supplementing surfaceome data with RNA expression data, several growth/survival receptors were shown to be co-expressed with their respective ligands and thus suggesting self-induction mechanisms, while other receptors or ligands were not detectable. As data about the presence of surface receptors and their associated expressed ligands may serve as base for future studies, further pathway characterization will enable the implementation of optimization strategies to further enhance cellular growth and survival behavior. KEY POINTS: • PI3K/AKT, MAPK, JAK-STAT, and RAP1 pathway receptors are enriched on the CHO cell surface and downstream pathways present on mRNA level. • Detected pathways indicate strong CHO survival and growth phenotypes. • Potential self-induction of surface receptors and respective ligands.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , CHO Cells , Cricetinae , Cricetulus , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics
8.
Bone Res ; 10(1): 51, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35879285

ABSTRACT

Bone mass is maintained by the balance between osteoclast-induced bone resorption and osteoblast-triggered bone formation. In inflammatory arthritis such as rheumatoid arthritis (RA), however, increased osteoclast differentiation and activity skew this balance resulting in progressive bone loss. O-GlcNAcylation is a posttranslational modification with attachment of a single O-linked ß-D-N-acetylglucosamine (O-GlcNAc) residue to serine or threonine residues of target proteins. Although O-GlcNAcylation is one of the most common protein modifications, its role in bone homeostasis has not been systematically investigated. We demonstrate that dynamic changes in O-GlcNAcylation are required for osteoclastogenesis. Increased O-GlcNAcylation promotes osteoclast differentiation during the early stages, whereas its downregulation is required for osteoclast maturation. At the molecular level, O-GlcNAcylation affects several pathways including oxidative phosphorylation and cell-cell fusion. TNFα fosters the dynamic regulation of O-GlcNAcylation to promote osteoclastogenesis in inflammatory arthritis. Targeted pharmaceutical or genetic inhibition of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) arrests osteoclast differentiation during early stages of differentiation and during later maturation, respectively, and ameliorates bone loss in experimental arthritis. Knockdown of NUP153, an O-GlcNAcylation target, has similar effects as OGT inhibition and inhibits osteoclastogenesis. These findings highlight an important role of O-GlcNAcylation in osteoclastogenesis and may offer the potential to therapeutically interfere with pathologic bone resorption.

9.
Metabolites ; 12(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35736440

ABSTRACT

Attempts have been made to determine the in vitro and in planta suppressive potential of particular Trichoderma strains (T16 and T23) and their secondary metabolites (SMs) against Asian soybean rust (ASR) incited by Phakopsora pachyrhizi. Aside from the previously identified SMs 6-pentyl-α-pyrone (6PAP) and viridiofungin A (VFA), the chemical structures of harzianic acid (HA), iso-harzianic acid (iso-HA), and harzianolide (HZL) were characterized in this study. Our results indicate that exposure of urediospores to 200 ppm 6PAP completely inhibits germination. A slightly higher dosage (250 ppm) of HZL and VFA reduces germination by 53.7% and 44%, respectively. Germ tube elongation seems more sensitive to 6PAP than urediospore germination. On detached leaves, application of conidia of T16 and T23 results in 81.4% and 74.3% protection, respectively. Likewise, 200 ppm 6PAP recorded the highest ASR suppression (98%), followed by HZL (78%) and HA (69%). Treatment of undetached leaves with 6PAP, HA, or HZL reduces ASR severity by 84.2%, 65.8%, and 50.4%, respectively. Disease reduction on the next, untreated trifoliate by T23 (53%), T16 (41%), HZL (42%), and 6PAP (32%) suggests a translocation or systemic activity of the SMs and their producers. To our knowledge, this study provides the first proof for controlling ASR using antifungal SMs of Trichoderma. Our findings strongly recommend the integration of these innovative metabolites, particularly 6PAP and/or their producers in ASR management strategies.

10.
Methods Mol Biol ; 2447: 83-93, 2022.
Article in English | MEDLINE | ID: mdl-35583774

ABSTRACT

The physiological relevance of site-specific precursor processing for the biogenesis of peptide hormones and growth factors can be demonstrated in genetic complementation experiments, in which a gain of function is observed for the cleavable wild-type precursor, but not for a non-cleavable precursor mutant. Similarly, cleavable and non-cleavable synthetic peptides can be used in bioassays to test whether processing is required for bioactivity. In genetic complementation experiments, site-directed mutagenesis has to be used to mask a processing site against proteolysis. Peptide-based bioassays have the distinctive advantage that peptides can be protected against proteolytic cleavage by backbone modifications, i.e., without changing the amino acid sequence. Peptide backbone modifications have been employed to increase the metabolic stability of peptide drugs, and in basic research, to investigate whether processing at a certain site is required for precursor maturation and formation of the bioactive peptide. For this approach, it is important to show that modification of the peptide backbone has the desired effect and does indeed protect the respective peptide bond against proteolysis. This can be accomplished with the MALDI-TOF mass spectrometry-based assay we describe here.


Subject(s)
Peptide Hormones , Protein Processing, Post-Translational , Amino Acid Sequence , Peptide Hormones/metabolism , Protein Sorting Signals , Proteolysis
11.
Proc Natl Acad Sci U S A ; 119(16): e2201195119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412898

ABSTRACT

Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptide Hormones , Protein Processing, Post-Translational , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Peptide Hormones/genetics , Peptide Hormones/metabolism , Tyrosine/metabolism
12.
Microorganisms ; 10(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35456828

ABSTRACT

Surfactin is described as a powerful biosurfactant and is natively produced by Bacillus subtilis in notable quantities. Among other industrially relevant characteristics, antimicrobial properties have been attributed to surfactin-producing Bacillus isolates. To investigate this property, stress approaches were carried out with biotechnologically established strains of Corynebacterium glutamicum, Bacillus subtilis, Escherichia coli and Pseudomonas putida with the highest possible amounts of surfactin. Contrary to the popular opinion, the highest growth-reducing effects were detectable in B. subtilis and E. coli after surfactin treatment of 100 g/L with 35 and 33%, respectively, while P. putida showed no growth-specific response. In contrast, other antimicrobial biosurfactants, like rhamnolipids and sophorolipids, showed significantly stronger effects on bacterial growth. Since the addition of high amounts of surfactin in defined mineral salt medium reduced the cell growth of B. subtilis by about 40%, the initial stress response at the protein level was analyzed by mass spectrometry, showing induction of stress proteins under control of alternative sigma factors σB and σW as well as the activation of LiaRS two-component system. Overall, although surfactin is associated with antimicrobial properties, relatively low growth-reducing effects could be demonstrated after the surfactin addition, challenging the general claim of the antimicrobial properties of surfactin.

13.
J Sci Food Agric ; 102(12): 5190-5199, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35289936

ABSTRACT

BACKGROUND: Various neutral and alkaline peptidases are commercially available for use in protein hydrolysis under neutral to alkaline conditions. However, the hydrolysis of proteins under acidic conditions by applying fungal aspartic peptidases (FAPs) has not been investigated in depth so far. The aim of this study, thus, was to purify a FAP from the commercial enzyme preparation, ROHALASE® BXL, determine its biochemical characteristics, and investigate its application for the hydrolysis of food and animal feed proteins under acidic conditions. RESULTS: A Trichoderma reesei derived FAP, with an apparent molecular mass of 45.8 kDa (sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SDS-PAGE) was purified 13.8-fold with a yield of 37% from ROHALASE® BXL. The FAP was identified as an aspartate protease (UniProt ID: G0R8T0) by inhibition and nano-LC-ESI-MS/MS studies. The FAP showed the highest activity at 50°C and pH 4.0. Monovalent cations, organic solvents, and reducing agents were tolerated well by the FAP. The FAP underwent an apparent competitive product inhibition by soy protein hydrolysate and whey protein hydrolysate with apparent Ki -values of 1.75 and 30.2 mg*mL-1 , respectively. The FAP showed promising results in food (soy protein isolate and whey protein isolate) and animal feed protein hydrolyses. For the latter, an increase in the soluble protein content of 109% was noted after 30 min. CONCLUSION: Our results demonstrate the applicability of fungal aspartic endopeptidases in the food and animal feed industry. Efficient protein hydrolysis of industrially relevant substrates such as acidic whey or animal feed proteins could be conducted by applying fungal aspartic peptidases. © 2022 Society of Chemical Industry.


Subject(s)
Aspartic Acid Proteases , Trichoderma , Animal Feed , Animals , Aspartic Acid Proteases/metabolism , Hydrolysis , Hypocreales , Protein Hydrolysates/chemistry , Soybean Proteins/metabolism , Tandem Mass Spectrometry
14.
J Proteomics ; 253: 104459, 2022 02 20.
Article in English | MEDLINE | ID: mdl-34923173

ABSTRACT

The cropping behavior of biennial apple (Malus ×domestica Borkh.) cultivars is irregular and often follows a biennial bearing pattern with 'On' years (high crop load and inhibited floral bud formation) followed by 'Off' years (little crop load and a promoted formation of floral buds). To study proteomic differences between floral and vegetative buds, trees of the strongly alternating cultivar 'Fuji' and the regular bearing cultivar 'Gala' were either completely thinned or not thinned at full bloom to establish two cropping treatments with no ('Off') or a high ('On') crop load, respectively. Student's t-Tests indicated significant differences of protein profiles in buds from 2-year old spurs from both treatments at each sampling date. Abundance patterns of protein clusters coincided with the onset of floral bud initiation and were most noticeable in buds from 'On' trees with a decreased abundance of key enzymes of the phenylpropanoid and flavonoid pathways and an increased abundance of histone deacetylase and ferritins. Furthermore, an increased abundance of proteins involved in histone and DNA methylation was found in the buds from 'Off' trees. This study presents the first large-scale, label-free proteomic profiling of floral and vegetative apple buds during the period of floral bud initiation. SIGNIFICANCE: Although several studies exist that address the complex developmental processes associated with the formation of floral buds in apple (Malus ×domestica Borkh.) at transcriptomic level, no data is available for explaining the difference between floral and vegetative buds or biennial and regular bearing cultivars on a proteomic level. This study presents the first large-scale, label-free proteomic profiling of floral and vegetative apple buds from the two cultivars 'Fuji' and 'Royal Gala' during the period of floral bud initiation and renders possible the development of suitable biomarkers for biennial bearing in apple.


Subject(s)
Malus , Child, Preschool , Flowers/metabolism , Gene Expression Regulation, Plant , Humans , Plant Proteins/metabolism , Proteomics , Trees/genetics , Trees/metabolism
15.
AMB Express ; 11(1): 144, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714452

ABSTRACT

Wild-type cultivations are of invaluable relevance for industrial biotechnology when it comes to the agricultural or food sector. Here, genetic engineering is hardly applicable due to legal barriers and consumer's demand for GMO-free products. An important pillar for wild-type cultivations displays the genus Bacillus. One of the challenges for Bacillus cultivations is the global ComX-dependent quorum sensing system. Here, molecular process control can serve as a tool to optimize the production process without genetic engineering. To realize this approach, quantitative knowledge of the mechanism is essential, which, however, is often available only to a limited extent. The presented work provides a case study based on the production of cyclic lipopeptide surfactin, whose expression is in dependence of ComX, using natural producer B. subtilis DSM 10 T. First, a surfactin reference process with 40 g/L of glucose was performed as batch fermentation in a pilot scale bioreactor system to gain novel insights into kinetic behavior of ComX in relation to surfactin production. Interestingly, the specific surfactin productivity did not increase linearly with ComX activity. The data were then used to derive a mathematic model for the time course of ComX in dependence of existing biomass, biomass growth as well as a putative ComX-specific protease. The newly adapted model was validated and transferred to other batch fermentations, employing 20 and 60 g/L glucose. The applied approach can serve as a model system for molecular process control strategies, which can thus be extended to other quorum sensing dependent wild-type cultivations.

16.
J Proteomics ; 247: 104318, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34224905

ABSTRACT

BACKGROUND/OBJECTIVES: Cereal products like flour and bread are known to trigger diseases such as wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Some of these diseases are caused by allergenic proteins, the expression of which might vary depending on the grain type and manufacturing processes. Therefore, we examined the protein composition and abundance of potentially allergenic proteins in flours from bread wheat, spelt and rye, and corresponding breads. MATERIALS AND METHODS: Using Nano-LC-ESI-MS/MS and label free quantification (LFQ) we analyzed the proteome of six different bread flours (wholegrain and superfine flours from rye, spelt and bread wheat) and 14 bread types (yeast and sourdough fermented breads from all flours and wheat breads plus/minus bread improver). Potentially allergenic proteins in flours and breads were functionally categorized using the Pfam database and relatively quantified by LFQ. RESULTS: We could show that almost equal numbers of proteins can be identified in rye- and spelt samples compared to wheat samples using the Uniprot bread wheat protein database, indicating high sequence conservation between cereals. In total, 4424 proteins were identified in the 20 flour and bread samples. The average number of identified proteins in flour (2719 ± 243) was slightly higher than in bread (2283 ± 232; P < 0.001). In wheat- and spelt wholegrain flour higher protein numbers (wheat: 2891 ± 90; spelt: 2743 ± 140) were identified on average than in superfine flour (wheat: 2562 ± 79; P = 0.009; spelt: 2431 ± 140; P = 0.004). Neither the absolute number nor the abundance distribution of potentially allergenic proteins were dependent on the flour type or the fermentation process, but known allergenic proteins like gliadins showed higher relative abundance in spelt- and wheat samples, compared to rye samples. CONCLUSION: We provide comprehensive proteome data for six flour types and related breads showing that the grain species have greater influence on proteome composition than milling and fermentation processes. Our data indicate that allergenic proteins are not selectively degraded during bread production and are more abundant in bread wheat and spelt compared to rye. SIGNIFICANCE: Our proteomics study revealed that bread contains a number of potentially and proven allergenic proteins. Most likely allergenicity is not dependent on milling or conventional fermentation processes, but on the grain type. Relative abundance of allergenic proteins was higher in spelt- and wheat samples than in rye samples. Considering rye bread as better suited to atopic individuals predisposed to react to cereal allergens, clinical trials are warranted to verify this assumption.


Subject(s)
Bread , Secale , Allergens , Bread/analysis , Humans , Proteome , Tandem Mass Spectrometry
17.
New Phytol ; 232(4): 1582-1590, 2021 11.
Article in English | MEDLINE | ID: mdl-34254310

ABSTRACT

The hemiparasitic plant Phtheirospermum japonicum (Phtheirospermum) is a nutritional specialist that supplements its nutrient requirements by parasitizing other plants through haustoria. During parasitism, the Phtheirospermum haustorium transfers hypertrophy-inducing cytokinins (CKs) to the infected host root. The CK biosynthesis genes required for haustorium-derived CKs and the induction of hypertrophy are still unknown. We searched for haustorium-expressed isopentenyltransferases (IPTs) that catalyze the first step of CK biosynthesis, confirmed the specific expression by in vivo imaging of a promoter-reporter, and further analyzed the subcellular localization, the enzymatic function and contribution to inducing hypertrophy by studying CRISPR-Cas9-induced Phtheirospermum mutants. PjIPT1a was expressed in intrusive cells of the haustorium close to the host vasculature. PjIPT1a and its closest homolog PjIPT1b located to the cytosol and showed IPT activity in vitro with differences in substrate specificity. Mutating PjIPT1a abolished parasite-induced CK responses in the host. A homolog of PjIPT1a also was identified in the related weed Striga hermonthica. With PjIPT1a, we identified the IPT enzyme that induces CK responses in Phtheirospermum japonicum-infected Arabidopsis roots. We propose that PjIPT1a exemplifies how parasitism-related functions evolve through gene duplications and neofunctionalization.


Subject(s)
Arabidopsis , Orobanchaceae , Alkyl and Aryl Transferases , Arabidopsis/genetics , Cytokinins , Gene Expression Regulation, Plant , Plant Roots
18.
J Cell Sci ; 134(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34152391

ABSTRACT

The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for signal transduction induced by the pattern recognition receptors NOD1 and NOD2 (referred to collectively as NOD1/2). Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells. Here, we identified the molecular composition of these complexes. Infection with Shigella flexneri to activate NOD1-RIPK2 revealed that RIPK2 formed dynamic interactions with several cellular proteins, including A20 (also known as TNFAIP3), erlin-1, erlin-2 and 14-3-3. Whereas interaction of RIPK2 with 14-3-3 proteins was strongly reduced upon infection with Shigella, erlin-1 and erlin-2 (erlin-1/2) specifically bound to RIPK2 complexes. The interaction of these proteins with RIPK2 was validated using protein binding assays and immunofluorescence staining. Beside bacterial activation of NOD1/2, depletion of the E3 ubiquitin ligase XIAP and treatment with RIPK2 inhibitors also led to the formation of RIPK2 cytosolic complexes. Although erlin-1/2 were recruited to RIPK2 complexes following XIAP inhibition, these proteins did not associate with RIPK2 structures induced by RIPK2 inhibitors. While the specific recruitment of erlin-1/2 to RIPK2 suggests a role in innate immune signaling, the biological response regulated by the erlin-1/2-RIPK2 association remains to be determined.


Subject(s)
Nod2 Signaling Adaptor Protein , Receptor-Interacting Protein Serine-Threonine Kinase 2 , 14-3-3 Proteins , Cytosol/metabolism , Humans , Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction
19.
Biotechnol Bioeng ; 118(8): 3015-3028, 2021 08.
Article in English | MEDLINE | ID: mdl-33951178

ABSTRACT

Chinese hamster ovary (CHO) suspension cells are the main production hosts for biopharmaceuticals. For the improvement of production processes, it is essential to understand the interaction between CHO cells and their microenvironment. While the cellular membrane is the crucial surface barrier between the inner and outer cell compartments, the subgroup of cell surface proteins (surfaceome) is of particular interest due to its potential to react to external factors and initiate cell communication and interaction pathways. Therefore, the CHO surfaceome was explored for the first time by enriching exposed N-glycosylated membrane proteins before tandem mass spectrometry (MS/MS) analyses, identifying a total of 449 surface proteins, including 34 proteins specific for production cells. Functional annotation and classification located most proteins to the cell surface belonging mainly to the protein classes of receptors, enzymes, and transporters. In addition, adhesion molecules as cadherins, integrins, Ig superfamily and extracellular matrix (ECM) proteins as collagens, laminins, thrombospondin, fibronectin, and tenascin were significantly enriched, which are involved in mechanisms for the formation of cell junctions, cell-cell and cell-ECM adhesion as focal adhesions. As cell adhesion and aggregation counteracts scalable production of biopharmaceuticals, experimental validation confirmed differential expression of integrin ß1 (ITGB1) and ß3, CD44, laminin, and fibronectin on the surface of aggregation-prone CHO production cells. The subsequent modulation of the central interaction protein ITGB1 by small interfering RNA knockdown substantially counteracted cell aggregation pointing toward novel engineering routes for aggregation reduction in biopharmaceutical production cells and exemplifying the potential of the surfaceome for specified engineering strategies.


Subject(s)
Membrane Proteins/metabolism , Proteome/metabolism , Proteomics , Animals , CHO Cells , Cell Adhesion , Cell Aggregation , Cricetulus , Tandem Mass Spectrometry
20.
Front Immunol ; 12: 653883, 2021.
Article in English | MEDLINE | ID: mdl-34054816

ABSTRACT

Tight regulation of inflammatory cytokine and interferon (IFN) production in innate immunity is pivotal for optimal control of pathogens and avoidance of immunopathology. The human Nod-like receptor (NLR) NLRP11 has been shown to regulate type I IFN and pro-inflammatory cytokine responses. Here, we identified the ATP-dependent RNA helicase DDX3X as a novel binding partner of NLRP11, using co-immunoprecipitation and LC-MS/MS. DDX3X is known to enhance type I IFN responses and NLRP3 inflammasome activation. We demonstrate that NLRP11 can abolish IKKϵ-mediated phosphorylation of DDX3X, resulting in lower type I IFN induction upon viral infection. These effects were dependent on the LRR domain of NLRP11 that we mapped as the interaction domain for DDX3X. In addition, NLRP11 also suppressed NLRP3-mediated caspase-1 activation in an LRR domain-dependent manner, suggesting that NLRP11 might sequester DDX3X and prevent it from promoting NLRP3-induced inflammasome activation. Taken together, our data revealed DDX3X as a central target of NLRP11, which can mediate the effects of NLRP11 on type I IFN induction as well as NLRP3 inflammasome activation. This expands our knowledge of the molecular mechanisms underlying NLRP11 function in innate immunity and suggests that both NLRP11 and DDX3X might be promising targets for modulation of innate immune responses.


Subject(s)
DEAD-box RNA Helicases/metabolism , Inflammasomes/metabolism , Interferon Type I/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism , Chromatography, Liquid , Cytokines/metabolism , Humans , Immunity, Innate , Inflammation Mediators , Protein Binding , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...