Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 335(1): 213-22, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20605905

ABSTRACT

The pan B-cell surface antigen CD19 is an attractive target for therapeutic monoclonal antibody (mAb) approaches. We have generated a new afucosylated anti-human (hu)CD19 mAb, MEDI-551, with increased affinity to human FcγRIIIA and mouse FcγRIV and enhanced antibody-dependent cellular cytotoxicity (ADCC). During in vitro ADCC assays with B-cell lines, MEDI-551 is effective at much lower mAb concentrations than the fucosylated parental mAb anti-CD19-2. Furthermore, the afucosylated CD19 mAb MEDI-551 depleted B cells from normal donor peripheral blood mononuclear cell samples in an autologous ADCC assay, as well as blood and tissue B cells in human CD19/CD20 double transgenic (Tg) mice at lower concentrations than that of the positive control mAb rituximab. In huCD19/CD20 Tg mice, both macrophage-mediated phagocytosis and complement-dependent cytotoxicity contribute to depletion with rituximab; MEDI-551 did not require complement for maximal B-cell depletion. Furthermore, extended B-cell depletion from the blood and spleen was achieved with MEDI-551, which is probably explained by bone marrow B-cell depletion in huCD19/CD20 Tg mice relative to the control mAb rituximab. In summary, MEDI-551 has potent B-cell-depleting activity in vitro and in vivo and may be a promising new approach for the treatment of B-cell malignancies and autoimmune diseases.


Subject(s)
Antigens, CD19/immunology , B-Lymphocytes/physiology , Animals , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Murine-Derived , Antibody-Dependent Cell Cytotoxicity , Antigens, CD19/genetics , Cell Proliferation/drug effects , Fucose/chemistry , Humans , Immunoglobulin G/immunology , Mice , Mice, Transgenic , Protein Engineering , Rituximab
2.
J Mol Biol ; 368(3): 652-65, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17362988

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of viral bronchiolitis and pneumonia in infants and children. Currently, palivizumab is the only approved monoclonal antibody (mAb) for prophylaxis of RSV. However, a small percentage of patients are not protected by palivizumab; in addition, palivizumab does not inhibit RSV replication effectively in the upper respiratory tract. We report here the development and characterization of motavizumab, an ultra-potent, affinity-matured, humanized mAb derived from palivizumab. Several palivizumab variants that enhanced the neutralization of RSV in vitro by up to 44-fold were generated; however, in vivo prophylaxis of cotton rats with these antibodies conferred only about a twofold improvement in potency over palivizumab. This unexpected small increase of in vivo potency was caused by poor serum pharmacokinetics and lung bio-availability that resulted from unexpectedly broad tissue binding. Subsequent analyses revealed that changes at three amino acids arising from the affinity maturation markedly increased the non-specific binding to various tissues. Our results suggested that k(on)-driven mutations are more likely to initiate non-specific binding events than k(off)-driven mutations. Reversion of these three residues to the original sequences greatly diminished the tissue binding. The resulting mAb, motavizumab, binds to RSV F protein 70-fold better than palivizumab, and exhibits about a 20-fold improvement in neutralization of RSV in vitro. In cotton rats, at equivalent concentrations, motavizumab reduced pulmonary RSV titers to up to 100-fold lower levels than did palivizumab and, unlike palivizumab, motavizumab very potently inhibited viral replication in the upper respiratory tract. This affinity-enhanced mAb is being investigated in pivotal clinical trials. Importantly, our engineering process offers precious insights into the improvement of other therapeutic mAbs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Viruses/drug effects , Respiratory System/virology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , Antiviral Agents/pharmacokinetics , Cell Line , Cross Reactions , Female , Humans , Lung/metabolism , Macaca fascicularis , Molecular Sequence Data , Mutation , Neutralization Tests , Palivizumab , Pan troglodytes , Respiratory Syncytial Viruses/physiology , Respiratory System/drug effects , Respiratory System/immunology , Sigmodontinae , Tissue Distribution , Virus Replication/drug effects
3.
J Virol ; 80(16): 7799-806, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16873237

ABSTRACT

Human metapneumovirus (hMPV) is a recently described member of the Paramyxoviridae family/Pneumovirinae subfamily and shares many common features with respiratory syncytial virus (RSV), another member of the same subfamily. hMPV causes respiratory tract illnesses that, similar to human RSV, occur predominantly during the winter months and have symptoms that range from mild to severe cough, bronchiolitis, and pneumonia. Like RSV, the hMPV virus can be subdivided into two genetic subgroups, A and B. With RSV, a single monoclonal antibody directed at the fusion (F) protein can prevent severe lower respiratory tract RSV infection. Because of the high level of sequence conservation of the F protein across all the hMPV subgroups, this protein is likely to be the preferred antigenic target for the generation of cross-subgroup neutralizing antibodies. Here we describe the generation of a panel of neutralizing monoclonal antibodies that bind to the hMPV F protein. A subset of these antibodies has the ability to neutralize prototypic strains of both the A and B hMPV subgroups in vitro. Two of these antibodies exhibited high-affinity binding to the F protein and were shown to protect hamsters against infection with hMPV. The data suggest that a monoclonal antibody could be used prophylactically to prevent lower respiratory tract disease caused by hMPV.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Metapneumovirus/immunology , Paramyxoviridae Infections/prevention & control , Respiratory Tract Infections/prevention & control , Viral Fusion Proteins/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Cells, Cultured , Humans , Respiratory Tract Infections/virology , Viral Fusion Proteins/antagonists & inhibitors
4.
J Mol Biol ; 350(1): 126-44, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15907931

ABSTRACT

We describe here the selection of ultra-potent anti-respiratory syncytial virus (RSV) antibodies for preventing RSV infection. A large number of antibody variants derived from Synagis (palivizumab), an anti-RSV monoclonal antibody that targets RSV F protein, were generated by a directed evolution approach that allowed convenient manipulation of the binding kinetics. Palivizumab variants with about 100-fold slower dissociation rates or with fivefold faster association rates were identified and tested for their ability to neutralize virus in a microneutralization assay. Our data reveal a major differential effect of the association and dissociation rates on the RSV neutralization, particularly for intact antibodies wherein the association rate plays the predominant role. Furthermore, we found that antibody binding valence also plays a critical role in mediating the viral neutralization through a mechanism that is likely unrelated to antibody size or binding avidity. We applied an iterative mutagenesis approach, and thereafter were able to identify palivizumab Fab variants with up to 1500-fold improvement and palivizumab IgG variants with up to 44-fold improvement in the ability to neutralize RSV. These anti-RSV antibodies likely will offer great clinical potential for RSV immunoprophylaxis. In addition, our findings provide insights into engineering potent antibody therapeutics for other disease targets.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal, Humanized , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Cell Line , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Neutralization Tests , Palivizumab , Protein Structure, Tertiary , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...