Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Astronaut ; 42(1-8): 419-30, 1998.
Article in English | MEDLINE | ID: mdl-11541625

ABSTRACT

In tadpoles of the Southern Clawed Toad (Xenopus laevis), the effects of an exposure to hypergravity of several days duration on the development of the roll-induced static vestibuloocular reflex (rVOR) were investigated. Special attention was given to the onset of the 9 or 12 days lasting 3G-period during early life. First recordings of the rVOR characteristics for complete 360 degrees rolls of the tadpoles were performed 24 hrs after the end of the 3G-period. The rVOR peak-to-peak amplitudes as well as the VOR-gain for a roll angle of 15 degrees from 3G-and 1G-samples recorded at the 2nd and 3rd day after 3G-termination agreed for the youngest group, but were reduced by approx. 30% in the older tadpoles. Long-term observations lasting up to 8 weeks after termination of the 3G-period, demonstrated (i) an early retardation of the development, and (ii) a developmental acceleration in all groups so that after 2 weeks in the stage 6/9- and 33/36-samples and after 8 weeks in the stage 45-tadpoles, the rVOR-amplitude as well as the rVOR-gain for a 15 degrees roll were at the same level in both the 3G- and the 1G-samples. The results support the existence of a sensitive period for the rVOR development, and additionally demonstrate the importance of the period of the first appearance of the rVOR for the development of adaptive properties of the underlying neuronal network. They also demonstrate the dominant efficiency of genetic programs in the functional development of the vestibular system. Methodological approaches are discussed which will be useful in the further description of the critical period. They include studies on the neuronogenesis and synaptic maturation within the vestibular pathways as well as on the fundamentals of buoyancy control during swimming. A modular but closed mini-system for experimental use is described which allows survival periods lasting many weeks and multiple types of treatments of developing aquatic animals in orbit, controlled automatically.


Subject(s)
Hypergravity , Reflex, Vestibulo-Ocular/physiology , Xenopus laevis/growth & development , Adaptation, Physiological , Age Factors , Animals , Equipment Design , Larva/growth & development , Life Support Systems , Space Flight/instrumentation , Vestibular Nuclei , Vestibule, Labyrinth/growth & development
2.
Eur J Biochem ; 226(3): 981-91, 1994 Dec 15.
Article in English | MEDLINE | ID: mdl-7813489

ABSTRACT

The alpha-amylase from the thermoacidophilic eubacterium Alicyclobacillus (Bacillus) acidocaldarius strain ATCC 27009 was studied as an example of an acidophilic protein. The enzyme was purified from the culture fluid. On an SDS/polyacrylamide gel, the protein an apparent molecular mass of 160 kDa, which is approximately 15% higher than that predicted from the nucleotide sequence. The difference is due to the enzyme being a glycoprotein. Deglycosylation or synthesis of the enzyme in Escherichia coli gave a product with the mass expected for the mature protein. The amylase hydrolyzed starch at random and from the inside, and its main hydrolysis products were maltotriose and maltose. It also formed glucose from starch (by hydrolysing the intermediate product maltotetraose to glucose and maltotriose) and exhibited some pullulanase activity. the pH and temperature optima were pH3 and 75 degrees C, respectively, characterizing the enzyme as being thermoacidophilic. Alignment of the sequence of the enzyme with that of its closest neutrophilic relatives and with that of alpha-1,4 or alpha-1,6 glycosidic-bond hydrolyzing enzymes of known three-dimensional structure showed that the acidophilic alpha-amylase contains approximately 30% less charged residues than do its closest relatives, that these residues are replaced by neutral polar residues, and that hot spots for these exchanges are likely to be located at the surface of the protein. Literature data show that similar effects are observed in three other acidophilic proteins. It is proposed that these proteins have adapted to the acidic environment by reducing the density of both positive and negative charges at their surface, that this effect circumvents electrostatic repulsion of charged groups at low pH, and thereby contributes to the acidostability of these proteins.


Subject(s)
Bacillus/enzymology , Enzyme Stability , alpha-Amylases/metabolism , Amino Acid Sequence , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Escherichia coli , Gene Expression , Glucose/metabolism , Glycosylation , Hydrogen-Ion Concentration , Maltose/metabolism , Molecular Sequence Data , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Temperature , Trisaccharides/metabolism , alpha-Amylases/chemistry , alpha-Amylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL