Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
New Phytol ; 243(1): 82-97, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38666344

ABSTRACT

Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.


Subject(s)
Climate Change , Eucalyptus , Plant Leaves , Species Specificity , Eucalyptus/physiology , Eucalyptus/growth & development , Plant Leaves/physiology , Plant Leaves/growth & development , Temperature , Seedlings/growth & development , Seedlings/physiology , Acclimatization/physiology , Australia , Geography
2.
Plant Cell Environ ; 45(7): 2037-2061, 2022 07.
Article in English | MEDLINE | ID: mdl-35394651

ABSTRACT

Leaf water potential (ψleaf ), typically measured using the pressure chamber, is the most important metric of plant water status, providing high theoretical value and information content for multiple applications in quantifying critical physiological processes including drought responses. Pressure chamber measurements of ψleaf (ψleafPC ) are most typical, yet, the practical complexity of the technique and of the underlying theory has led to ambiguous understanding of the conditions to optimize measurements. Consequently, specific techniques and precautions diversified across the global research community, raising questions of reliability and repeatability. Here, we surveyed specific methods of ψleafPC from multiple laboratories, and synthesized experiments testing common assumptions and practices in ψleafPC for diverse species: (i) the need for equilibration of previously transpiring leaves; (ii) leaf storage before measurement; (iii) the equilibration of ψleaf for leaves on bagged branches of a range of dehydration; (iv) the equilibration of ψleaf across the lamina for bagged leaves, and the accuracy of measuring leaves with artificially 'elongated petioles'; (v) the need in ψleaf measurements for bagging leaves and high humidity within the chamber; (vi) the need to avoid liquid water on leaf surfaces; (vii) the use of 'pulse' pressurization versus gradual pressurization; and (viii) variation among experimenters in ψleafPC determination. Based on our findings we provide a best practice protocol to maximise accuracy, and provide recommendations for ongoing species-specific tests of important assumptions in future studies.


Subject(s)
Plant Leaves , Water , Droughts , Plant Leaves/physiology , Reproducibility of Results , Water/physiology
3.
Tree Physiol ; 42(10): 1916-1927, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35157081

ABSTRACT

Relationships between tree size and water use indicate how soil water is partitioned between differently sized individuals, and hence competition for water. These relationships are rarely examined, let alone whether there is consistency in shape across populations. Competition for water among plants is often assumed to be size-symmetric, i.e., exponents (b1) of power functions (water use ∝ biomassb1) equal to 1, with all sizes using the same amount of water proportionally to their size. We tested the hypothesis that b1 actually varies greatly, and based on allometric theory, that b1 is only centered around 1 when size is quantified as basal area or sapwood area (not diameter). We also examined whether b1 varies spatially and temporally in relation to stand structure (height and density) and climate. Tree water use ∝ sizeb1 power functions were fitted for 80 species and 103 sites using the global SAPFLUXNET database. The b1 were centered around 1 when tree size was given as basal area or sapwood area, but not as diameter. The 95% confidence intervals of b1 included the theoretical predictions for the scaling of plant vascular networks. b1 changed through time within a given stand for the species with the longest time series, such that larger trees gained an advantage during warmer and wetter conditions. Spatial comparisons across the entire dataset showed that b1 correlated only weakly (R2 < 12%) with stand structure or climate, suggesting that inter-specific variability in b1 and hence the symmetry of competition for water may be largely related to inter-specific differences in tree architecture or physiology rather than to climate or stand structure. In conclusion, size-symmetric competition for water (b1 ≈ 1) may only be assumed when size is quantified as basal area or sapwood area, and when describing a general pattern across forest types and species. There is substantial deviation in b1 between individual stands and species.


Subject(s)
Trees , Water , Climate , Forests , Plants , Soil , Trees/physiology
4.
Tree Physiol ; 41(12): 2248-2261, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34100071

ABSTRACT

The capacity of trees to release water from storage compartments into the transpiration stream can mitigate damage to hydraulic functioning. However, the location of these 'transient' water sources and also the pathways of water movement other than vertical through tree stems still remain poorly understood. We conducted an experiment on two tree species in a common garden in eastern Australia that naturally grow in regions of high (Eucalyptus tereticornis, 'Red Gum') and low (Eucalyptus sideroxylon, 'Ironbark') annual precipitation rates. Deuterium-enriched water (1350% label strength) was directly introduced into the transpiration stream of three trees per species for four consecutive days. Subsequently, the trees were felled, woody tissue samples were collected from different heights and azimuthal positions of the stems, and stable isotope ratios were determined on the water extracted from all samples. The presence/absence of the tracer along the radial and vertical stem axes in combination with xylem hydraulic properties inferred from sapflow, leaf and stem water potentials, wood moisture contents and anatomical sapwood characteristics elucidated species-specific patterns of short-term stem water storage and movement. The distribution of water isotopes at natural abundance among woody tissues indicated systematic differences with highest values of sapwood water and lower values in inner bark and heartwood. Presence of tracer in water of the inner bark highlighted the importance of this tissue as capacitor. Although injected at the northern side of stems, tracer was also discovered at the southern side, providing empirical evidence for circumferential flow in sapwood, particularly of Ironbark. Greater vertical water transport in Red Gum compared with more radial and circumferential water transport in Ironbark were associated with species-specific sapwood anatomy. Our study highlights the value of combining information from stable isotope tracers and wood anatomy to investigate patterns of water transport and storage of tall trees in situ.


Subject(s)
Eucalyptus , Trees , Eucalyptus/metabolism , Isotopes , Plant Stems/metabolism , Trees/metabolism , Water/metabolism , Water Movements , Xylem/metabolism
5.
Glob Chang Biol ; 26(4): 2544-2560, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31883292

ABSTRACT

Understanding how tree growth is affected by rising temperature is a key to predicting the fate of forests in future warmer climates. Increasing temperature has direct effects on plant physiology, but there are also indirect effects of increased water limitation because evaporative demand increases with temperature in many systems. In this study, we experimentally resolved the direct and indirect effects of temperature on the response of growth and photosynthesis of the widely distributed species Eucalyptus tereticornis. We grew E. tereticornis in an array of six growth temperatures from 18 to 35.5°C, spanning the climatic distribution of the species, with two watering treatments: (a) water inputs increasing with temperature to match plant demand at all temperatures (Wincr ), isolating the direct effect of temperature; and (b) water inputs constant for all temperatures, matching demand for coolest grown plants (Wconst ), such that water limitation increased with growth temperature. We found that constant water inputs resulted in a reduction of temperature optima for both photosynthesis and growth by ~3°C compared to increasing water inputs. Water limitation particularly reduced the total amount of leaf area displayed at Topt and intermediate growth temperatures. The reduction in photosynthesis could be attributed to lower leaf water potential and consequent stomatal closure. The reduction in growth was a result of decreased photosynthesis, reduced total leaf area display and a reduction in specific leaf area. Water availability had no effect on the response of stem and root respiration to warming, but we observed lower leaf respiration rates under constant water inputs compared to increasing water inputs at higher growth temperatures. Overall, this study demonstrates that the indirect effect of increasing water limitation strongly modifies the potential response of tree growth to rising global temperatures.

6.
Sci Total Environ ; 688: 333-345, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31233915

ABSTRACT

The Loess Plateau in northwestern China constitutes one of the most vulnerable semi-arid regions in the world due to long-term decline in forest cover, soil nutrient depletion by agricultural use, and attendant soil erosion. Here, we characterize the significance of N2-fixing Robinia pseudoacacia L. and non-N2-fixing Juglans regia L. for improving nutrient availability and water retention in soil by comparing a range of biological and physicochemical features in monoculture and mixed plantations of both species. We found that N2-fixing Robinia facilitates the nitrogen and phosphorus composition of non-N2-fixing Juglans in the mixed stand as a consequence of improved soil nutrient availability, evident as higher levels of nitrogen and labile carbon compared to mono-specific stands. This demonstrates that intercropping N2-fixing Robinia with non-N2-fixing woody plants can greatly improve soil carbon and nitrogen bioavailability as well as whole-plant nutrition and can potentially mediate water retention with additional sequestration of soil organic carbon in the range of 1 t C ha-1 year-1. Thus, intercropping N2-fixing woody species (e.g. Robinia pseudoacacia or Hippophae rhamnoides L.) with locally important non-N2-fixing tree and shrub species should be considered in afforestation strategies for landscape restoration.


Subject(s)
Agriculture/methods , Nitrogen Fixation/physiology , Robinia/physiology , China , Desert Climate , Ecosystem , Nitrogen
7.
Tree Physiol ; 39(6): 910-924, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30865274

ABSTRACT

Drought-induced tree mortality alters forest structure and function, yet our ability to predict when and how different species die during drought remains limited. Here, we explore how stomatal control and drought tolerance traits influence the duration of drought stress leading to critical levels of hydraulic failure. We examined the growth and physiological responses of four woody plant species (three angiosperms and one conifer) representing a range of water-use and drought tolerance traits over the course of two controlled drought-recovery cycles followed by an extended dry-down. At the end of the final dry-down phase, we measured changes in biomass ratios and leaf carbohydrates. During the first and second drought phases, plants of all species closed their stomata in response to decreasing water potential, but only the conifer species avoided water potentials associated with xylem embolism as a result of early stomatal closure relative to thresholds of hydraulic dysfunction. The time it took plants to reach critical levels of water stress during the final dry-down was similar among the angiosperms (ranging from 39 to 57 days to stemP88) and longer in the conifer (156 days to stemP50). Plant dry-down time was influenced by a number of factors including species stomatal-hydraulic safety margin (gsP90 - stemP50), as well as leaf succulence and minimum stomatal conductance. Leaf carbohydrate reserves (starch) were not depleted at the end of the final dry-down in any species, irrespective of the duration of drought. These findings highlight the need to consider multiple structural and functional traits when predicting the timing of hydraulic failure in plants.


Subject(s)
Droughts , Magnoliopsida/physiology , Pinus/physiology , Trees/physiology , Eucalyptus/physiology , Plant Leaves/physiology , Plant Stems/physiology , Plant Stomata/physiology , Stress, Physiological , Trees/growth & development
8.
Glob Chang Biol ; 25(5): 1665-1684, 2019 05.
Article in English | MEDLINE | ID: mdl-30746837

ABSTRACT

Understanding forest tree responses to climate warming and heatwaves is important for predicting changes in tree species diversity, forest C uptake, and vegetation-climate interactions. Yet, tree species differences in heatwave tolerance and their plasticity to growth temperature remain poorly understood. In this study, populations of four Eucalyptus species, two with large range sizes and two with comparatively small range sizes, were grown under two temperature treatments (cool and warm) before being exposed to an equivalent experimental heatwave. We tested whether the species with large and small range sizes differed in heatwave tolerance, and whether trees grown under warmer temperatures were more tolerant of heatwave conditions than trees grown under cooler temperatures. Visible heatwave damage was more common and severe in the species with small rather than large range sizes. In general, species that showed less tissue damage maintained higher stomatal conductance, lower leaf temperatures, larger increases in isoprene emissions, and less photosynthetic inhibition than species that showed more damage. Species exhibiting more severe visible damage had larger increases in heat shock proteins (HSPs) and respiratory thermotolerance (Tmax ). Thus, across species, increases in HSPs and Tmax were positively correlated, but inversely related to increases in isoprene emissions. Integration of leaf gas-exchange, isoprene emissions, proteomics, and respiratory thermotolerance measurements provided new insight into mechanisms underlying variability in tree species heatwave tolerance. Importantly, warm-grown seedlings were, surprisingly, more susceptible to heatwave damage than cool-grown seedlings, which could be associated with reduced enzyme concentrations in leaves. We conclude that species with restricted range sizes, along with trees growing under climate warming, may be more vulnerable to heatwaves of the future.


Subject(s)
Climate Change , Eucalyptus/physiology , Heat-Shock Response/physiology , Temperature , Eucalyptus/genetics , Eucalyptus/growth & development , Eucalyptus/metabolism , Forests , Photosynthesis/physiology , Plant Dispersal , Plant Leaves/physiology , Species Specificity , Thermotolerance
9.
New Phytol ; 222(3): 1298-1312, 2019 05.
Article in English | MEDLINE | ID: mdl-30536971

ABSTRACT

The allocation of carbon (C) is an important component of tree physiology that influences growth and ecosystem C storage. Allocation is challenging to measure, and its sensitivity to environmental changes such as warming and altered water availability is uncertain. We exposed young Eucalyptus tereticornis trees to +3°C warming and elimination of summer precipitation in the field using whole-tree chambers. We calculated C allocation terms using detailed measurements of growth and continuous whole-crown CO2 and water exchange measurements. Trees grew from small saplings to nearly 9 m height during this 15-month experiment. Warming accelerated growth and leaf area development, and it increased the partitioning of gross primary production (GPP) to aboveground respiration and growth while decreasing partitioning below ground. Eliminating summer precipitation reduced C gain and growth but did not impact GPP partitioning. Trees utilized deep soil water and avoided strongly negative water potentials. Warming increased growth respiration, but maintenance respiration acclimated homeostatically. The increasing growth in the warmed treatment resulted in higher rates of respiration, even with complete acclimation of maintenance respiration. Warming-induced stimulations of tree growth likely involve increased C allocation above ground, particularly to leaf area development, whereas reduced water availability may not stimulate allocation to roots.


Subject(s)
Eucalyptus/growth & development , Temperature , Trees/growth & development , Water/metabolism , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Cell Respiration , Droughts , Plant Leaves/physiology , Soil/chemistry
10.
Tree Physiol ; 38(9): 1286-1301, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29741732

ABSTRACT

Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.


Subject(s)
Carbon Dioxide , Carbon/metabolism , Eucalyptus/physiology , Photosynthesis/genetics , Plant Leaves/physiology , Australia , Biomass , Eucalyptus/genetics , Genotype , Nitrogen/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Trees/growth & development , Trees/physiology
11.
Ann Bot ; 121(1): 129-141, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29325002

ABSTRACT

Background and Aims: Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. Methods: To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. Key Results: Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. Conclusions: The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees.


Subject(s)
Eucalyptus/anatomy & histology , Trees/anatomy & histology , Eucalyptus/physiology , Microscopy, Electron, Transmission , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Stems/anatomy & histology , Plant Stems/physiology , Trees/physiology , Water/metabolism , Xylem/anatomy & histology , Xylem/physiology
12.
Glob Chang Biol ; 24(6): 2390-2402, 2018 06.
Article in English | MEDLINE | ID: mdl-29316093

ABSTRACT

Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO2 and H2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.


Subject(s)
Eucalyptus/physiology , Hot Temperature , Plant Leaves/physiology , Plant Transpiration/physiology , Trees/physiology , Climate Change , Forests
13.
Glob Chang Biol ; 23(12): 5069-5082, 2017 12.
Article in English | MEDLINE | ID: mdl-28544671

ABSTRACT

Impacts of climate warming depend on the degree to which plants are constrained by adaptation to their climate-of-origin or exhibit broad climatic suitability. We grew cool-origin, central and warm-origin provenances of Eucalyptus tereticornis in an array of common temperature environments from 18 to 35.5°C to determine if this widely distributed tree species consists of geographically contrasting provenances with differentiated and narrow thermal niches, or if provenances share a common thermal niche. The temperature responses of photosynthesis, respiration, and growth were equivalent across the three provenances, reflecting a common thermal niche despite a 2,200 km geographic distance and 13°C difference in mean annual temperature at seed origin. The temperature dependence of growth was primarily mediated by changes in leaf area per unit plant mass, photosynthesis, and whole-plant respiration. Thermal acclimation of leaf, stem, and root respiration moderated the increase in respiration with temperature, but acclimation was constrained at high temperatures. We conclude that this species consists of provenances that are not differentiated in their thermal responses, thus rejecting our hypothesis of adaptation to climate-of-origin and suggesting a shared thermal niche. In addition, growth declines with warming above the temperature optima were driven by reductions in whole-plant leaf area and increased respiratory carbon losses. The impacts of climate warming will nonetheless vary across the geographic range of this and other such species, depending primarily on each provenance's climate position on the temperature response curves for photosynthesis, respiration, and growth.


Subject(s)
Adaptation, Physiological , Climate , Eucalyptus/physiology , Carbon Dioxide , Photosynthesis/physiology , Plant Leaves/physiology , Temperature , Trees/physiology
14.
New Phytol ; 215(1): 97-112, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28378882

ABSTRACT

Xylem vulnerability to embolism is emerging as a major factor in drought-induced tree mortality events across the globe. However, we lack understanding of how and to what extent climate has shaped vascular properties or functions. We investigated the evolution of xylem hydraulic function and diversification patterns in Australia's most successful gymnosperm clade, Callitris, the world's most drought-resistant conifers. For all 23 species in this group, we measured embolism resistance (P50 ), xylem specific hydraulic conductivity (Ks ), wood density, and tracheary element size from natural populations. We investigated whether hydraulic traits variation linked with climate and the diversification of this clade using a time-calibrated phylogeny. Embolism resistance varied widely across the Callitris clade (P50 : -3.8 to -18.8 MPa), and was significantly related to water scarcity, as was tracheid diameter. We found no evidence of a safety-efficiency tradeoff; Ks and wood density were not related to rainfall. Callitris diversification coincides with the onset of aridity in Australia since the early Oligocene. Our results highlight the evolutionary lability of xylem traits with climate, and the leading role of aridity in the diversification of conifers. The uncoupling of safety from other xylem functions allowed Callitris to evolve extreme embolism resistance and diversify into xeric environments.


Subject(s)
Biological Evolution , Cupressaceae/physiology , Humidity , Australia , Climate , Cupressaceae/genetics , Phylogeny , Water/metabolism , Xylem/physiology
15.
Plant Cell Environ ; 40(2): 290-303, 2017 02.
Article in English | MEDLINE | ID: mdl-27861997

ABSTRACT

Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale.


Subject(s)
Models, Biological , Plant Bark/chemistry , Plant Stems/growth & development , Trees/growth & development , Water/analysis , Agricultural Irrigation , Australia , Eucalyptus/physiology , Osmosis , Plant Stems/physiology , Switzerland , Trees/physiology
16.
Ecology ; 97(6): 1626, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27859219

ABSTRACT

We present two comprehensive data sets that describe xylem vessel diameters and related sapwood traits for species of Eucalyptus from arid and semi-arid woodlands and forests in Australia. Between 2009 and 2014, sapwood of mature trees was sampled in south-western, south-eastern and eastern Australia. One additional species was sampled from tropical north-western Australia. The first data set describes samples collected from the basal stem section (130 cm above ground) of three individuals of 31 species of which eight species were replicated at sites that differed in climatic conditions. The second data set describes vessel characteristics of three trees from each of 10 species that were sampled at 8 m below the tree apex. The sampled trees of these 10 species are also part of the first data set. In total, we report diameters (D) for over 25 100 vessels, from 494 digital images taken from 117 trees. We also report vessel frequencies, void-to-wood ratios, sapwood densities and hydraulically weighted vessel diameters (Dh). Supporting data of the first data set include tree diameter at breast height (130 cm above ground), tree height, sample locations, and summary climate data. In this data set, diameter of individual vessels ranges from 10 to over 300 µm, and vessel frequency from 360 to 9070 vessels cm-2 . Wood density ranges from 0.47 to 0.96 g cm-3 . Void-to-wood ratio ranges from 6% to 27% and Dh ranges from 46 to 236 µm. Mean annual rainfall (P) at sample sites ranges from 246 to 2274 mm and FAO56 reference evaporation (E) from 777 to 2110 mm. The aridity index (E/P) ranges from 0.15 to 2.93 (dimensionless). Tree diameters range from 9 to 90 cm and tree heights range from 6 to 70 m. D and Dh in the second data set range from 11 to 271 and 68 to 205 µm, respectively. These datasets will make a valuable contribution to future continental-scale and global-scale studies of the relationship between xylem hydraulic architecture and climate. The data sets are unique in the sense that they are phylogenetically constrained, allowing in-depth assessment of plasticity of hydraulic attributes within a single tree genus.


Subject(s)
Eucalyptus/physiology , Xylem/physiology , Eucalyptus/classification , Eucalyptus/metabolism , Western Australia , Wood
17.
Science ; 354(6309)2016 10 14.
Article in English | MEDLINE | ID: mdl-27738143

ABSTRACT

The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.


Subject(s)
Biodiversity , Conservation of Natural Resources , Forests , Trees/physiology , Climate Change , Extinction, Biological
18.
Plant Cell Environ ; 39(10): 2342-5, 2016 10.
Article in English | MEDLINE | ID: mdl-27093688

ABSTRACT

Research in plant hydraulics has provided important insights into plant responses to drought and species absolute drought tolerance. However, our ability to predict when plants will die from hydraulic failure under extreme drought is limited by a lack of knowledge with regards to the dynamics of plant desiccation following stomatal closure. Thus, we develop a simple hydraulics model based on branch-level traits that incorporates key aspects of allometry, rates of water loss and resistance to embolism thresholds in order to define species differences in the time it takes plants to desiccate from stomatal closure to lethal levels of drought stress.


Subject(s)
Droughts , Models, Biological , Plants/metabolism , Stress, Physiological , Dehydration , Hydrodynamics , Plant Physiological Phenomena , Species Specificity , Water/metabolism
19.
Ecol Lett ; 19(3): 240-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26743135

ABSTRACT

Current theory presumes that natural selection on vascular traits is controlled by a trade-off between efficiency and safety of hydraulic architecture. Hence, traits linked to efficiency, such as vessel diameter, should show biogeographic patterns; but critical tests of these predictions are rare, largely owing to confounding effects of environment, tree size and phylogeny. Using wood sampled from a phylogenetically constrained set of 28 Eucalyptus species, collected from a wide gradient of aridity across Australia, we show that hydraulic architecture reflects adaptive radiation of this genus in response to variation in climate. With increasing aridity, vessel diameters narrow, their frequency increases with a distribution that becomes gradually positively skewed and sapwood density increases while the theoretical hydraulic conductivity declines. Differences in these hydraulic traits appear largely genotypic in origin rather than environmentally plastic. Data reported here reflect long-term adaptation of hydraulic architecture to water availability. Rapidly changing climates, on the other hand, present significant challenges to the ability of eucalypts to adapt their vasculature.


Subject(s)
Climate , Eucalyptus/anatomy & histology , Wood/anatomy & histology , Australia
20.
Tree Physiol ; 35(7): 706-22, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26163488

ABSTRACT

Not long ago, textbooks on plant physiology divulged the view that phloem and xylem are separate transport systems with exclusive functions. Phloem was flowing downwards providing roots with carbohydrates. Xylem transported water upwards from roots to leaves. This simplified view has changed forever. Today we have a much-refined understanding of the complex transport mechanisms, regulatory functions and surprisingly ingenuous solutions trees have evolved to distribute carbohydrates and water internally to fuel growth and help mediate biotic and abiotic stresses. This review focuses on functional links between tissues of the inner bark region (i.e., more than just phloem) and the xylem, facilitated by radially aligned and interconnected parenchyma cells, called rays. Rays are usually found along the entire vertical axis of tree stems, mediating a number of transport processes. We use a top-down approach to unveil the role of rays in these processes. Due to the central role of rays in facilitating the coupling of inner bark and xylem we dedicate the first section to ray anatomy, pathways and control mechanisms involved in radial transport. In the second section, basic concepts and models for radial movement through rays are introduced and their impacts on water and carbon fluxes at the whole-tree level are discussed. This section is followed by a closer look at the capacitive function of composite tissues in stems where gradual changes in water potential generate a diurnal 'pulse'. We explain how this pulse can be measured and interpreted, and where the limitations of such analyses are. Towards the end of this review, we include a brief description of the role of radial transport during limited availability of water. By elucidating the strong hydraulic link between inner bark and xylem, the traditional view of two separate transport systems dissolves and the idea of one interconnected, yet highly segregated transport network for carbohydrates and water arises.


Subject(s)
Phloem/physiology , Plant Bark/metabolism , Plant Vascular Bundle/physiology , Xylem/physiology , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...