Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5233, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475387

ABSTRACT

Measles virus (MeV) is a highly contagious pathogen that enters the human host via the respiratory route. Besides acute pathologies including fever, cough and the characteristic measles rash, the infection of lymphocytes leads to substantial immunosuppression that can exacerbate the outcome of infections with additional pathogens. Despite the availability of effective vaccine prophylaxis, measles outbreaks continue to occur worldwide. We demonstrate that prophylactic and post-exposure therapeutic treatment with an orally bioavailable small-molecule polymerase inhibitor, ERDRP-0519, prevents measles disease in squirrel monkeys (Saimiri sciureus). Treatment initiation at the onset of clinical signs reduced virus shedding, which may support outbreak control. Results show that this clinical candidate has the potential to alleviate clinical measles and augment measles virus eradication.


Subject(s)
Enzyme Inhibitors/therapeutic use , Measles/prevention & control , Morpholines/therapeutic use , Piperidines/therapeutic use , Pyrazoles/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacokinetics , Immune Tolerance/drug effects , Immunity, Humoral/drug effects , Measles virus/drug effects , Morpholines/pharmacokinetics , Piperidines/pharmacokinetics , Pyrazoles/pharmacokinetics , Saimiri , Virus Replication/drug effects , Virus Shedding/drug effects
2.
mBio ; 10(3)2019 05 14.
Article in English | MEDLINE | ID: mdl-31088929

ABSTRACT

Paramyxoviruses and pneumoviruses have similar life cycles and share the respiratory tract as a point of entry. In comparative genome-scale siRNA screens with wild-type-derived measles, mumps, and respiratory syncytial viruses in A549 cells, a human lung adenocarcinoma cell line, we identified vesicular transport, RNA processing pathways, and translation as the top pathways required by all three viruses. As the top hit in the translation pathway, ABCE1, a member of the ATP-binding cassette transporters, was chosen for further study. We found that ABCE1 supports replication of all three viruses, confirming its importance for viruses of both families. More detailed characterization revealed that ABCE1 is specifically required for efficient viral but not general cellular protein synthesis, indicating that paramyxoviral and pneumoviral mRNAs exploit specific translation mechanisms. In addition to providing a novel overview of cellular proteins and pathways that impact these important pathogens, this study highlights the role of ABCE1 as a host factor required for efficient paramyxovirus and pneumovirus translation.IMPORTANCE The Paramyxoviridae and Pneumoviridae families include important human and animal pathogens. To identify common host factors, we performed genome-scale siRNA screens with wild-type-derived measles, mumps, and respiratory syncytial viruses in the same cell line. A comparative bioinformatics analysis yielded different members of the coatomer complex I, translation factors ABCE1 and eIF3A, and several RNA binding proteins as cellular proteins with proviral activity for all three viruses. A more detailed characterization of ABCE1 revealed its essential role for viral protein synthesis. Taken together, these data sets provide new insight into the interactions between paramyxoviruses and pneumoviruses and host cell proteins and constitute a starting point for the development of broadly effective antivirals.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Host Microbial Interactions/genetics , Paramyxoviridae/pathogenicity , Pneumovirus/pathogenicity , A549 Cells , Computational Biology , Gene Expression , Humans , RNA, Messenger , RNA, Small Interfering , RNA-Binding Proteins/genetics
3.
Adv Virus Res ; 100: 75-98, 2018.
Article in English | MEDLINE | ID: mdl-29551144

ABSTRACT

Despite the availability of safe and effective vaccines against measles and several animal morbilliviruses, they continue to cause regular outbreaks and epidemics in susceptible populations. Morbilliviruses are highly contagious and share a similar pathogenesis in their respective hosts. This review provides an overview of morbillivirus history and the general replication cycle and recapitulates Morbillivirus pathogenesis focusing on common and unique aspects seen in different hosts. It also summarizes the state of knowledge regarding virus-host interactions on the cellular level with an emphasis on viral interference with innate immune response activation, and highlights remaining knowledge gaps.


Subject(s)
Host-Pathogen Interactions , Morbillivirus Infections/immunology , Morbillivirus Infections/virology , Morbillivirus/physiology , Animals , Humans , Immune Evasion , Morbillivirus/growth & development , Morbillivirus/immunology , Morbillivirus/pathogenicity , Virus Replication
4.
Vaccine ; 34(44): 5329-5335, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27616472

ABSTRACT

While seasonal influenza vaccines are usually non-adjuvanted, H1N1pdm09 vaccines were formulated with different squalene-containing adjuvants, to enable the reduction of antigen content thus increasing the number of doses available. To comparatively assess the effects of these adjuvants on antibody responses against matched and mismatched strains, and to correlate antibody levels with protection from disease, ferrets were immunized with 2µg of commercial H1N1pdm09 vaccine antigen alone or formulated with different licensed adjuvants. The use of squalene-containing adjuvants increased neutralizing antibody responses around 100-fold, and resulted in a significantly reduced viral load after challenge with a matched strain. While all animals mounted strong total antibody responses against the homologous H1N1 hemagglutinin (HA) protein, which correlated with the respective neutralizing antibody titers, no reactivity with the divergent H3, H5, H7, and H9 proteins were detected. Only the adjuvanted vaccines also induced antibodies against the neuraminidase (NA) protein, which were able to also recognize NA proteins from other N1 carrying strains. These findings not only support the use of squalene-containing adjuvants in dose-sparing strategies but also support speculations that the induction of NA-specific responses associated with the use of these adjuvants may confer partial protection to heterologous strains carrying the same NA subtype.


Subject(s)
Adjuvants, Immunologic/chemistry , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Neuraminidase/immunology , Squalene/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Cross Protection , Disease Models, Animal , Ferrets/immunology , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Squalene/administration & dosage , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...