Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JOM (1989) ; 73(12): 4248-4257, 2021.
Article in English | MEDLINE | ID: mdl-34970069

ABSTRACT

The favorable combination of high material removal rate and low influence on the material beneath the ultra-short pulsed laser-processed surface are of particular advantage for sample preparation. This is especially true at the micrometer scale or for the pre-preparation for a subsequent focused ion beam milling process. Specific surface features, the laser-induced periodic surface structures, are generated on femtosecond laser-irradiated surfaces in most cases, which pose an issue for surface-sensitive mechanical testing or microstructural investigations. This work strives for an approach to enhance the surface quality of glancing-incident laser-processed surfaces on the model material copper with two distinctly different grain sizes. A new generalized perspective is presented, in which optimized parameter selection serves to counteract the formation of the laser-induced periodic surface structures, enabling, for example, grain orientation mapping directly on femtosecond laser processed surfaces. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11837-021-04963-w.

2.
Materials (Basel) ; 12(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067659

ABSTRACT

The influence of irradiation on mechanical properties of polymer foils used in spacecraft applications has widely been studied via macroscopic tensile samples. An increase in the local resolution of this investigation can be achieved by reducing the sample's dimensions. A femtosecond laser enables a fast fabrication of micro-samples with dimensions from tens of µ m to the mm range, with ideally no influence on the material. Tensile experiments using such micro-tensile samples were conducted on FEP, Upilex-S and PET foils. The influence of the laser processing on the polymer foils was evaluated. Additionally an investigation of degradation due to electron irradiation was performed. Furthermore an outlook to extend this technique to depth-resolved measurements by preparing samples from locally thinned foils is presented. The study demonstrates the feasibility of femtosecond laser processing for rapid fabrication of micro-samples, enabling insights into the effect of electron irradiation on local mechanical properties of polymers.

3.
Sci Technol Adv Mater ; 18(1): 574-583, 2017.
Article in English | MEDLINE | ID: mdl-28970867

ABSTRACT

The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...