Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1317522, 2024.
Article in English | MEDLINE | ID: mdl-38524132

ABSTRACT

Cell-based cancer immunotherapy has achieved significant advancements, providing a source of hope for cancer patients. Notwithstanding the considerable progress in cell-based immunotherapy, the persistently low response rates and the exorbitant costs associated with their implementation still present a formidable challenge in clinical settings. In the landscape of cell-based cancer immunotherapies, an uncharted territory involves Type 2 innate lymphoid cells (ILC2s) and interleukin-33 (IL-33) which promotes ILC2 functionality, recognized for their inherent ability to enhance immune responses. Recent discoveries regarding their role in actuating cytolytic T lymphocyte responses, including curbing tumor growth rates and hindering metastasis, have added a new dimension to our understanding of the IL-33/ILC2 axis. These recent insights may hold significant promise for ILC2 cell-based immunotherapy. Nevertheless, the prospect of adoptively transferring ILC2s to confer immune protection against tumors has yet to be investigated. The present study addresses this hypothesis, revealing that ILC2s isolated from the lungs of tumor-bearing mice, and tumor infiltrating ILC2s when adoptively transferred after tumor establishment at a ratio of one ILC2 per sixty tumor cells, leads to an influx of tumor infiltrating CD4+ and CD8+ T lymphocytes as well as tumor infiltrating eosinophils resulting in a remarkable reduction in tumor growth. Moreover, we find that post-adoptive transfer of ILC2s, the number of tumor infiltrating ILC2s is inversely proportional to tumor size. Finally, we find corollaries of the IL-33/ILC2 axis enhancing the infiltration of eosinophils in human prostate carcinomas patients' expressing high levels of IL-33 versus those expressing low levels of IL-33. Our results underscore the heightened efficacy of adoptively transferred ILC2s compared to alternative approaches, revealing an approximately one hundred fifty-fold superiority on a cell-per-cell basis over CAR T-cells in the specific targeting and elimination of tumors within the same experimental model. Overall, this study demonstrates the functional significance of ILC2s in cancer immunosurveillance and provides the proof of concept of the potential utility of ILC2 cell-based cancer immunotherapies.


Subject(s)
Immunity, Innate , Neoplasms , Male , Humans , Mice , Animals , Cytokines , Interleukin-33 , Lymphocytes , Neoplasms/therapy
2.
Stem Cell Reports ; 19(4): 456-468, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38552634

ABSTRACT

The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated ß-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of ß-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.


Subject(s)
Alzheimer Disease , Animals , Humans , Mice , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Stem Cell Transplantation/adverse effects , Iatrogenic Disease , Mice, Transgenic , Disease Models, Animal
3.
Commun Biol ; 7(1): 12, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172434

ABSTRACT

Type 2 innate lymphoid cells (ILC2s) perform vital functions in orchestrating humoral immune responses, facilitating tissue remodelling, and ensuring tissue homeostasis. Additionally, in a role that has garnered considerably less attention, ILC2s can also enhance Th1-related cytolytic T lymphocyte immune responses against tumours. Studies have thus far generally failed to address the mystery of how one ILC2 cell-type can participate in a multiplicity of functions. Here we utilized single cell RNA sequencing analysis to create the first comprehensive atlas of naïve and tumour-associated lung ILC2s and discover multiple unique subtypes of ILC2s equipped with developmental gene programs that become skewed during tumour expansion favouring inflammation, antigen processing, immunological memory and Th1-related anti-tumour CTL responses. The discovery of these new subtypes of ILC2s challenges current paradigms of ILC2 biology and provides an explanation for their diversity of function.


Subject(s)
Immunity, Innate , Neoplasms , Humans , Lymphocytes , Lung/pathology , Inflammation/pathology , Neoplasms/genetics , Neoplasms/pathology
4.
Front Pharmacol ; 14: 1119620, 2023.
Article in English | MEDLINE | ID: mdl-37637416

ABSTRACT

Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.

5.
Sci Rep ; 13(1): 13079, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567897

ABSTRACT

The interplay between AMPA-type glutamate receptors (AMPARs) and major histocompatibility complex class I (MHC-I) proteins in regulating synaptic signaling is a crucial aspect of central nervous system (CNS) function. In this study, we investigate the significance of the cytoplasmic tail of MHC-I in synaptic signaling within the CNS and its impact on the modulation of synaptic glutamate receptor expression. Specifically, we focus on the Y321 to F substitution (Y321F) within the conserved cytoplasmic tyrosine YXXΦ motif, known for its dual role in endocytosis and cellular signaling of MHC-I. Our findings reveal that the Y321F substitution influences the expression of AMPAR subunits GluA2/3 and leads to alterations in the phosphorylation of key kinases, including Fyn, Lyn, p38, ERK1/2, JNK1/2/3, and p70 S6 kinase. These data illuminate the crucial role of MHC-I in AMPAR function and present a novel mechanism by which MHC-I integrates extracellular cues to modulate synaptic plasticity in neurons, which ultimately underpins learning and memory.


Subject(s)
Glutamic Acid , Signal Transduction , Glutamic Acid/metabolism , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Major Histocompatibility Complex
6.
Front Pharmacol ; 14: 1119607, 2023.
Article in English | MEDLINE | ID: mdl-37256225

ABSTRACT

Genetic and epigenetic events have been implicated in the downregulation of the cellular antigen processing and presentation machinery (APM), which in turn, has been associated with cancer evasion of the immune system. When these essential components are lacking, cancers develop the ability to subvert host immune surveillance allowing cancer cells to become invisible to the immune system and, in turn, promote cancer metastasis. Here we describe and validate the first high-throughput cell-based screening assay to identify chemical extracts and unique chemical entities that reverse the downregulation of APM components in cell lines derived from metastatic tumours. Through the screening of a library of 480 marine invertebrate extracts followed by bioassay-guided fractionation, curcuphenol, a common sesquiterpene phenol derived from turmeric, was identified as the active compound of one of the extracts. We demonstrate that curcuphenol induces the expression of the APM components, TAP-1 and MHC-I molecules, in cell lines derived from both metastatic prostate and lung carcinomas. Turmeric and curcumins that contain curcuphenol have long been utilized not only as a spice in the preparation of food, but also in traditional medicines for treating cancers. The remarkable discovery that a common component of spices can increase the expression of APM components in metastatic tumour cells and, therefore reverse immune-escape mechanisms, provides a rationale for the development of foods and advanced nutraceuticals as therapeutic candidates for harnessing the power of the immune system to recognize and destroy metastatic cancers.

7.
Sci Rep ; 13(1): 6448, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081001

ABSTRACT

Major histocompatibility complex class I (MHC-I) proteins are expressed in neurons, where they regulate synaptic plasticity. However, the mechanisms by which MHC-I functions in the CNS remains unknown. Here we describe the first structural analysis of a MHC-I protein, to resolve underlying mechanisms that explains its function in the brain. We demonstrate that Y321F mutation of the conserved cytoplasmic tyrosine-based endocytosis motif YXXΦ in MHC-I affects spine density and synaptic structure without affecting neuronal complexity in the hippocampus, a region of the brain intimately involved in learning and memory. Furthermore, the impact of the Y321F substitution phenocopies MHC-I knock-out (null) animals, demonstrating that reverse, outside-in signalling events sensing the external environment is the major mechanism that conveys this information to the neuron and this has a previously undescribed yet essential role in the regulation of synaptic plasticity.


Subject(s)
Brain , Neurons , Animals , Brain/metabolism , Neurons/metabolism , Neuronal Plasticity/physiology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Signal Transduction , Hippocampus/metabolism
8.
Front Immunol ; 13: 982082, 2022.
Article in English | MEDLINE | ID: mdl-36923728

ABSTRACT

Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response. Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition. Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.


Subject(s)
Cannabinoids , Neoplasms , Humans , Immune Evasion , Adaptive Immunity , Cannabinoids/pharmacology
9.
EBioMedicine ; 71: 103503, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34534764

ABSTRACT

BACKGROUND: Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aß) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aß drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aß levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aß triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain. METHODS: We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aß deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology. FINDINGS: Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aß depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD. INTERPRETATION: Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation. FUNDING: None.


Subject(s)
Alzheimer Disease/pathology , Antineoplastic Agents/pharmacology , Brain/blood supply , Brain/pathology , Neovascularization, Pathologic , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Animals , Antineoplastic Agents/therapeutic use , Axitinib/pharmacology , Behavior, Animal , Biomarkers , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Disease Models, Animal , Disease Susceptibility , Drug Monitoring , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Mice , Neovascularization, Pathologic/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Tight Junctions/metabolism , Tissue Distribution , Treatment Outcome , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
10.
Front Neurosci ; 15: 596976, 2021.
Article in English | MEDLINE | ID: mdl-34149342

ABSTRACT

The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of diseases of the brain. Our previous studies demonstrated that that a soluble form of melanotransferrin (MTf; Uniprot P08582; also known as p97, MFI2, and CD228), a mammalian iron-transport protein, is an effective carrier for delivery of drug conjugates across the BBB into the brain and was the first BBB targeting delivery system to demonstrate therapeutic efficacy within the brain. Here, we performed a screen to identify peptides from MTf capable of traversing the BBB. We identified a highly conserved 12-amino acid peptide, termed MTfp, that retains the ability to cross the intact BBB intact, distributes throughout the parenchyma, and enter endosomes and lysosomes within neurons, astrocytes and microglia in the brain. This peptide may provide a platform for the transport of therapeutics to the CNS, and thereby offers new avenues for potential treatments of neuropathologies that are currently refractory to existing therapies.

11.
Sci Rep ; 11(1): 12233, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112824

ABSTRACT

Type 2 innate lymphoid cells (ILC2s) were discovered approximately ten years ago and their clinical relevance is gaining greater importance. However, their successful isolation from mammalian tissues and in vitro culture and expansion continues to pose challenges. This is partly due to their scarcity compared to other leukocyte populations, but also because our current knowledge of ILC2 biology is incomplete. This study is focused on ST2+ IL-25Rlo lung resident ILC2s and demonstrate for the first time a methodology allowing mouse type 2 innate lymphoid cells to be cultured, and their numbers expanded in serum-free medium supplemented with Interleukins IL-33, IL-2, IL-7 and TSLP. The procedures described methods to isolate ILC2s and support their growth for up to a week while maintaining their phenotype. During this time, they significantly expand from low to high cell concentrations. Furthermore, for the first time, sub-cultures of primary ILC2 purifications in larger 24- and 6-well plates were undertaken in order to compare their growth in other media. In culture, ILC2s had doubling times of 21 h, a growth rate of 0.032 h-1 and could be sub-cultured in early or late phases of exponential growth. These studies form the basis for expanding ILC2 populations that will facilitate the study and potential applications of these rare cells under defined, serum-free conditions.


Subject(s)
Cell Culture Techniques , Culture Media, Serum-Free , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Animals , Biomarkers , Cells, Cultured , Cytokines/biosynthesis , Lymphocyte Subsets/cytology , Mice
13.
Front Mol Biosci ; 8: 611367, 2021.
Article in English | MEDLINE | ID: mdl-33869275

ABSTRACT

The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.

14.
Front Immunol ; 10: 2473, 2019.
Article in English | MEDLINE | ID: mdl-31736943

ABSTRACT

Calcium (Ca2+) is a vital secondary messenger in T lymphocytes regulating a vast array of important events including maturation, homeostasis, activation, and apoptosis and can enter the cell through CRAC, TRP, and CaV channels. Here we describe a mutation in the L-type Ca2+ channel CaV1.4 leading to T lymphocyte dysfunction, including several hallmarks of immunological exhaustion. CaV1.4-deficient mice exhibited an expansion of central and effector memory T lymphocytes, and an upregulation of inhibitory receptors on several T cell subsets. Moreover, the sustained elevated levels of activation markers on B lymphocytes suggest that they are in a chronic state of activation. Functionally, T lymphocytes exhibited a reduced store-operated Ca2+ flux compared to wild-type controls. Finally, modifying environmental conditions by herpes virus infection exacerbated the dysfunctional immune phenotype of the CaV1.4-deficient mice. This is the first example where the mutation of a CaV channel leads to T lymphocyte dysfunction, including the upregulation of several inhibitory receptors, hallmarks of T cell exhaustion, and establishes the physiological importance of CaV channel signaling in maintaining a nimble immune system.


Subject(s)
Calcium Channels, L-Type/genetics , Mutation , Phenotype , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Calcium/metabolism , Calcium Signaling , Gene Expression , Genetic Association Studies , Hepatitis, Viral, Animal/immunology , Hepatitis, Viral, Animal/virology , Immunologic Memory , Immunophenotyping , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Mice , Mice, Knockout , Murine hepatitis virus/immunology
15.
Immunity ; 50(2): 418-431.e6, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30770245

ABSTRACT

Sepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-ß (IFN-ß)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.


Subject(s)
ATP-Binding Cassette Transporters/immunology , Macrophages/immunology , Sepsis/immunology , Shock, Septic/immunology , Ubiquitin-Conjugating Enzymes/immunology , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/immunology , Adenosine Triphosphate/metabolism , Animals , Cytokines/immunology , Cytokines/metabolism , Female , Interferon-beta/immunology , Interferon-beta/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/classification , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , RNA Interference , Sepsis/genetics , Sepsis/metabolism , Shock, Septic/genetics , Shock, Septic/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination/immunology
16.
Sci Rep ; 8(1): 2924, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440650

ABSTRACT

Type 2 innate lymphoid cells (ILC2) potentiate immune responses, however, their role in mediating adaptive immunity in cancer has not been assessed. Here, we report that mice genetically lacking ILC2s have significantly increased tumour growth rates and conspicuously higher frequency of circulating tumour cells (CTCs) and resulting metastasis to distal organs. Our data support the model that IL-33 dependent tumour-infiltrating ILC2s are mobilized from the lungs and other tissues through chemoattraction to enter tumours, and subsequently mediate tumour immune-surveillance by cooperating with dendritic cells to promote adaptive cytolytic T cell responses. We conclude that ILC2s play a fundamental, yet hitherto undescribed role in enhancing anti-cancer immunity and controlling tumour metastasis.


Subject(s)
Immunity, Innate , Lymphocytes/immunology , Models, Biological , Neoplasms/immunology , Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic/immunology , Humans , Interleukin-33/metabolism , Mice , Neoplasm Metastasis , Neoplasms/metabolism
17.
PLoS One ; 12(5): e0175918, 2017.
Article in English | MEDLINE | ID: mdl-28542262

ABSTRACT

ABCF1 is an ABC transporter family protein that has been shown to regulate innate immune response and is a risk gene for autoimmune pancreatitis and arthritis. Unlike other members of ABC transporter family, ABCF1 lacks trans-membrane domains and is thought to function in translation initiation through an interaction with eukaryotic translation initiation factor 2 (eIF2). To study ABCF1 expression and function in development and disease, we used a single gene trap insertion in the Abcf1 gene in murine embryonic stem cells (ES cells) that allowed lineage tracing of the endogenous Abcf1 promoter by following the expression of a ß-galactosidase reporter gene. From the ES cells, heterozygous mice (Abcf1+/-) were produced. No live born Abcf1-/- progeny were ever generated, and the lethality was not mouse strain-specific. Thus, we have determined that Abcf1 is an essential gene in development. Abcf1-/- mice were found to be embryonic lethal at 3.5 days post coitum (dpc), while Abcf1+/- mice appeared developmentally normal. Abcf1+/- mice were fertile and showed no significant differences in their anatomy when compared with their wild type littermates. The Abcf1 promoter was found to be active in all organs in adult mice, but varies in levels of expression in specific cell types within tissues. Furthermore, we observed high promoter activity in the blastocysts and embryos. Overall, Abcf1 expression in embryos is required for development and its expression in adults was highly correlated with actively proliferating and differentiating cell types.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Embryo, Mammalian/embryology , Embryo, Mammalian/immunology , Embryonic Development , Immunity, Innate , ATP-Binding Cassette Transporters/deficiency , ATP-Binding Cassette Transporters/genetics , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Mice , Promoter Regions, Genetic/genetics
18.
Sci Rep ; 6: 30555, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27619158

ABSTRACT

A new paradigm for understanding immune-surveillance and immune escape in cancer is described here. Metastatic carcinomas express reduced levels of IL-33 and diminished levels of antigen processing machinery (APM), compared to syngeneic primary tumours. Complementation of IL-33 expression in metastatic tumours upregulates APM expression and functionality of major histocompatibility complex (MHC)-molecules, resulting in reduced tumour growth rates and a lower frequency of circulating tumour cells. Parallel studies in humans demonstrate that low tumour expression of IL-33 is an immune biomarker associated with recurrent prostate and kidney renal clear cell carcinomas. Thus, IL-33 has a significant role in cancer immune-surveillance against primary tumours, which is lost during the metastatic transition that actuates immune escape in cancer.


Subject(s)
Carcinoma, Renal Cell/immunology , Down-Regulation , Interleukin-33/genetics , Kidney Neoplasms/immunology , Prostatic Neoplasms/immunology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , Humans , Interleukin-33/metabolism , Kidney Neoplasms/genetics , Male , Mice , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Tumor Escape
19.
Alzheimers Res Ther ; 5(6): 64, 2013.
Article in English | MEDLINE | ID: mdl-24351529

ABSTRACT

Growing evidence suggests that vascular perturbation plays a critical role in the pathogenesis of Alzheimer's disease (AD). It appears to be a common feature in addition to the classic pathological hallmarks of amyloid beta (Aß) plaques and neurofibrillary. Moreover, the accumulation of Aß in the cerebral vasculature is closely associated with cognitive decline, and disruption of the blood-brain barrier (BBB) has been shown to coincide with the onset of cognitive impairment. Although it was originally hypothesized that the accumulation of Aß and the subsequent disruption of the BBB were due to the impaired clearance of Aß from the brain, a body of data now suggests an alternative hypothesis for vascular dysfunction in AD that amyloidogenesis promotes extensive neoangiogenesis leading to increased vascular permeability and subsequent hypervascularization. In this review, we discuss the role Aß plays in angiogenesis of the neurovasculature and BBB and how it may contribute to the pathogenesis of AD. These studies suggest that interventions that directly or indirectly affect angiogenesis could have beneficial effects on amyloid and other pathways in AD.

20.
PLoS One ; 3(6): e2469, 2008 Jun 25.
Article in English | MEDLINE | ID: mdl-18575595

ABSTRACT

BACKGROUND: Therapeutic intervention in many neurological diseases is thwarted by the physical obstacle formed by the blood-brain barrier (BBB) that excludes most drugs from entering the brain from the blood. Thus, identifying efficacious modes of drug delivery to the brain remains a "holy grail" in molecular medicine and nanobiotechnology. Brain capillaries, that comprise the BBB, possess an endogenous receptor that ferries an iron-transport protein, termed p97 (melanotransferrin), across the BBB. Here, we explored the hypothesis that therapeutic drugs "piggybacked" as conjugates of p97 can be shuttled across the BBB for treatment of otherwise inoperable brain tumors. APPROACH: Human p97 was covalently linked with the chemotherapeutic agents paclitaxel (PTAX) or adriamycin (ADR) and following intravenous injection, measured their penetration into brain tissue and other organs using radiolabeled and fluorescent derivatives of the drugs. In order to establish efficacy of the conjugates, we used nude mouse models to assess p97-drug conjugate activity towards glioma and mammary tumors growing subcutaneously compared to those growing intracranially. PRINCIPAL FINDINGS: Bolus-injected p97-drug conjugates and unconjugated p97 traversed brain capillary endothelium within a few minutes and accumulated to 1-2% of the injected by 24 hours. Brain delivery with p97-drug conjugates was quantitatively 10 fold higher than with free drug controls. Furthermore, both free-ADR and p97-ADR conjugates equally inhibited the subcutaneous growth of gliomas growing outside the brain. Evocatively, only p97-ADR conjugates significantly prolonged the survival of animals bearing intracranial gliomas or mammary tumors when compared to similar cumulated doses of free-ADR. SIGNIFICANCE: This study provides the initial proof of concept for p97 as a carrier capable of shuttling therapeutic levels of drugs from the blood to the brain for the treatment of neurological disorders, including classes of resident and metastatic brain tumors. It may be prudent, therefore, to consider implementation of this novel delivery platform in various clinical settings for therapeutic intervention in acute and chronic neurological diseases.


Subject(s)
Antineoplastic Agents/administration & dosage , Blood-Brain Barrier , Drug Carriers , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Fluorescent Dyes , Humans , Mice , Mice, Nude , Paclitaxel/administration & dosage , Paclitaxel/pharmacokinetics , Paclitaxel/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...