Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiat Res ; 65(1): 136-143, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38037422

ABSTRACT

We demonstrate the application of fluorescence optical fiber coupled to a telecom grade fiber as a sensor for alpha particles using alpha-specific ZnS(Ag) scintillation materials whose wavelength is down-shifted into a low-loss region of the telecom grade fiber transmission band. Telecom-grade fiber optics offer a solution for sensing alpha radiation in deep repositories and cask storage for radioactive materials due to the stability of SiO2 under normal environmental conditions and its relative radiation hardness at low radiation doses. Long-term nuclear waste storage facilities require sensors for the detection of leakage of radioactive materials that are maintenance-free, do not require power and can survive with no 'wear out' mechanisms for decades. By accomplishing the wavelength transformation, we maximize efficiencies in the detection of α-particles and signal transport and can detect alpha scintillation at distances on the order of >1 km with a sensor that is ~3% efficient and can be easily scaled as a sensor array. This paper describes the construction and testing of the sensor including manufacture of the controlled thickness films, verification of the wavelength shift from 450 to 620 nm and optimization of the sensitivity as a function of thickness. We also model the relative sensitivity of the film as a function of film thickness, and we demonstrate a signal-to-noise ratio of 10 at a range of greater than 1 km.


Subject(s)
Alpha Particles , Optical Fibers , Silicon Dioxide , Fiber Optic Technology
2.
J Radiat Res ; 58(4): 464-473, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28369631

ABSTRACT

Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here the microfabrication of gadolinium (Gd) conversion material-based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation-induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-doped aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 µm for a 300 µm-thick partially depleted diode of 300 mm2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and Kα,ß X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources.


Subject(s)
Gadolinium/chemistry , Microtechnology/instrumentation , Neutrons , Temperature , Electrons , Models, Theoretical , Time Factors , X-Rays
3.
Anal Chem ; 77(16): 5215-20, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16097761

ABSTRACT

Measurements of the performance of a miniature, portable 12-mm-diameter, 57-mm-length low-temperature cofired ceramic (LTCC) ion mobility spectrometer drift tube were undertaken to verify models of ion transport and determine the physical shape of the ion "swarms" in the LTCC tube. Simplified two-dimensional Gaussian models of ion swarm shape were fit to measured data to extract geometrical shape parameters. Results indicate that tube-transfer function effects that produce asymmetric ion swarms are minimized in the tube reducing temporal dispersion. Data are presented that illustrate the swarm shape as a function of gate time, electric field magnitude, and total charge in the ion swarm. Characterization and understanding of the ion transport mechanisms and effects that limit the resolution and other performance parameters of miniature IMS drift tubes is essential to the development of practical, robust, portable systems for "first responder" and homeland security missions.

SELECTION OF CITATIONS
SEARCH DETAIL
...