Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 143(24): 244111, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26723655

ABSTRACT

Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

2.
J Chem Phys ; 140(6): 064110, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24527903

ABSTRACT

State-specific vibration correlation methods beyond the vibrational multi-configuration self-consistent field (VMCSCF) approximation have been developed, which allow for the accurate calculation of state energies for systems suffering from strong anharmonic resonances. Both variational multi-reference configuration interaction approaches and an implementation of approximate 2nd order vibrational multi-reference perturbation theory are presented. The variational approach can be significantly accelerated by a configuration selection scheme, which leads to negligible deviations in the final results. Relaxation effects due to the partitioning of the correlation space and the performance of a VMCSCF modal basis in contrast to a standard modal basis obtained from vibrational self-consistent field theory have been investigated in detail. Benchmark calculations based on high-level potentials are provided for the propargyl cation and cis-diazene.

3.
J Chem Phys ; 138(4): 044311, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23387588

ABSTRACT

Anharmonic zero point vibrational energies (ZPVEs) calculated using both conventional CCSD(T) and MP2 in combination with vibrational second-order perturbation theory (VPT2) are compared to explicitly correlated CCSD(T)-F12 and MP2-F12 results that utilize vibrational configuration interaction (VCI) theory for 26 molecules of varying size. Sequences of correlation consistent basis sets are used throughout. It is found that the explicitly correlated methods yield results close to the basis set limit even with double-zeta quality basis sets. In particular, the anharmonic contributions to the ZPVE are accurately recovered at just the MP2 (or MP2-F12) level of theory. Somewhat surprisingly, the best vibrational CI results agreed with the VPT2 values with a mean unsigned deviation of just 0.09 kJ/mol and a standard deviation of just 0.11 kJ/mol. The largest difference was observed for C(4)H(4)O (0.34 kJ/mol). A simplified version of the vibrational CI procedure that limited the modal expansion to at most 2-mode coupling yielded anharmonic corrections generally within about 0.1 kJ/mol of the full 3- or 4-mode results, except in the cases of C(3)H(8) and C(4)H(4)O where the contributions were underestimated by 1.3 and 0.8 kJ/mol, respectively (34% and 40%, respectively). For the molecules considered in this work, accurate anharmonic ZPVEs are most economically obtained by combining CCSD(T)-F12a/cc-pVDZ-F12 harmonic frequencies with either MP2/aug-cc-pVTZ/VPT2 or MP2-F12/cc-pVDZ-F12/VCI anharmonic corrections.

4.
J Phys Chem A ; 115(40): 11050-6, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21894927

ABSTRACT

Accurate anharmonic frequencies are provided for molecules of current research, i.e., diazirines, diazomethane, the corresponding fluorinated and deuterated compounds, their dioxygen analogs, and others. Vibrational-state energies were obtained from state-specific vibrational multiconfiguration self-consistent field theory (VMCSCF) based on multilevel potential energy surfaces (PES) generated from explicitly correlated coupled cluster, CCSD(T)-F12a, and double-hybrid density functional calculations, B2PLYP. To accelerate the vibrational structure calculations, a configuration selection scheme as well as a polynomial representation of the PES have been exploited. Because experimental data are scarce for these systems, many calculated frequencies of this study are predictions and may guide experiments to come.


Subject(s)
Azirines/chemistry , Diazomethane/chemistry , Stereoisomerism , Vibration
5.
J Chem Phys ; 134(20): 204108, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21639425

ABSTRACT

A configuration selection scheme has been used to speed up vibrational multiconfiguration self-consistent field calculations. Deviations with respect to reference calculations were found to be negligible while yielding an acceleration of about two orders of magnitude. Its application to bridged lithium compounds (Li(2)H(2), Li(2)F(2), Li(2)O(2), and Li(3)F(3)) based on high-level coupled-cluster potential energy surfaces provides accurate vibrational transitions for all fundamental modes. The explicit inclusion of 4-mode couplings was found to be important for Li(2)H(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...