Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Fungal Biol Biotechnol ; 8(1): 17, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34798908

ABSTRACT

Fungal biomaterials are becoming increasingly popular in the fields of architecture and design, with a significant bloom of projects having taken place during the last 10 years. Using mycelium as a stabilizing compound for fibers from agricultural waste, new building elements can be manufactured according to the circular economy model and be used for architectural construction to transform the building industry towards an increased environmental and economic sustainability. Simultaneously, research on those materials and especially fungal biocomposites is producing knowledge that allows for the materials themselves to inspire and transform the architectural design. Novel research on those materials is not only allowing for their use as construction materials, but it inspires and affects the architectural design process through the discovery and variation of the materials' properties. Today, many interdisciplinary teams are working on this emerging field to integrate fungal biocomposites in the construction industry and to merge science, art, and architecture responsibly.This study provides an overview of the progress that has been made in this field during the last 10 years, focusing on six works that are presented in more detail. Those six works are spaces at an architectural scale which showcase unique elements and innovative aspects for the use of fungal biomaterials in architecture. Each work has followed different design strategies, different fabrication methods, or different post-processing methods. All of them together have produced significant technical knowledge as well as a cultural impact for the field of architecture but also for the field of fungal biotechnology.

3.
Curr Biol ; 12(11): 957-62, 2002 Jun 04.
Article in English | MEDLINE | ID: mdl-12062063

ABSTRACT

There is considerable interest in the mechanisms that drive and control the spread of morphogens in developing animals. Although much attention is given to events occurring after release from expressing cells, release itself could be an important modulator of range. Indeed, a dedicated protein, Dispatched, is needed to release Hedgehog from the surface of expressing cells. We find that, in Drosophila embryos, much Wingless (as well as a GFP-Wingless fusion protein) remains tightly associated with secreting cells. Retention occurs both within the secretory pathway and at the cell surface and requires functional heparan sulfate proteoglycans. As a further means of retention, secreting cells readily endocytose Wingless protein that does reach the cell surface. Such endocytosed Wingless can in turn be sent back to the cell surface (the first direct observation of ligand recycling in live embryos). Recycling may serve to sustain high-level signaling in this region of the epidermis.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/embryology , Proto-Oncogene Proteins/metabolism , Animals , Base Sequence , DNA Primers , Drosophila/cytology , Drosophila/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Endocytosis , Green Fluorescent Proteins , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Recombinant Fusion Proteins/metabolism , Wnt1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...