Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Microbiol Spectr ; 12(6): e0403123, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38738925

ABSTRACT

STW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18ß-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18ß-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5. IMPORTANCE: STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.


Subject(s)
Biotransformation , Feces , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Plant Extracts , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/drug therapy , Gastrointestinal Microbiome/drug effects , Humans , Feces/microbiology , Adult , Plant Extracts/metabolism , Plant Extracts/pharmacology , Male , Female , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Middle Aged , Plants, Medicinal/microbiology , Plants, Medicinal/chemistry
2.
Phytochemistry ; 218: 113938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061483

ABSTRACT

Four previously undescribed carvotacetones including one monomeric (1) and three dimeric (8, 9, 10) derivatives, together with six known compounds were isolated from the n-hexane extract of the aerial parts of Sphaeranthus africanus L. The structures of the previously undescribed compounds were elucidated as 3-angeloyloxy-5-isobutanoyloxy-7-hydroxycarvotacetone (1), 7,7'-oxybis{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbutanoyloxy]carvotacetone} (8), (2″S*,3″R*)-7-{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbuta-noyloxy]carvotaceton-7-yloxy}-3-angeloyloxy-5-(2,3-dihydroxy-2-methylbutanoyloxy)carvo-tacetone (9), and 7,7'-oxybis{3-angeloyloxy-5-[(2S*,3R*)-2,3-dihydroxy-2-methylbutanoyl-oxy]carvotacetone} (10). The three dimeric derivatives (8-10) showed potent anti-proliferative activity against human cancer cell lines (CCRF-CEM, MDA-MB-231, U-251, HCT-116) with IC50 values ranging from 0.2 to 2.0 µM. Caspases 3 and 7 were found to be activated by all compounds, indicating apoptosis induction activity. Monomers exhibited a specific inhibition of NO production in BV2 and RAW 264.7 cells with IC50 values ranging from 4.2 to 6.8 µM which were 2-3.5-fold lower than IC50 values causing cytotoxicity. In addition, the carvotacetones reduced NF-κB1 (p105) mRNA expression at concentrations of 10 and 2.5 µM. Altogether, the results indicate that carvotacetones may be interesting lead structures for the development of anti-cancer and anti-inflammatory drugs.


Subject(s)
Asteraceae , Cyclohexanones , Humans , Cell Line , Plant Extracts/pharmacology , Plant Extracts/chemistry , Asteraceae/chemistry
3.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836712

ABSTRACT

Various 4-aminotetrahydropyridinylidene salts were treated with aldehydes in an alkaline medium. Their conversion to 5-substituted ß-hydroxyketones in a one-step reaction succeeded only with an aliphatic aldehyde. Instead, aromatic aldehydes gave 5-substituted ß-aminoketones or a single δ-diketone. The new compounds were characterized using spectroscopic methods and a single crystal structure analysis. Some of them showed anticancer and antibacterial properties.

4.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833929

ABSTRACT

The 4-substituted 3-amino-1,2,5-oxadiazole 1 from the Malaria Box Project of the Medicines for Malaria Venture foundation shows very promising selectivity and in vitro activity against Plasmodium falciparum. Within the first series of new compounds, various 3-acylamino analogs were prepared. This paper now focuses on the investigation of the importance of the aromatic substituent in ring position 4. A number of new structure-activity relationships were elaborated, showing that antiplasmodial activity and selectivity strongly depend on the substitution pattern of the 4-phenyl moiety. In addition, physicochemical parameters relevant for drug development were calculated (logP and ligand efficiency) or determined experimentally (CYP3A4-inhibition and aqueous solubility). N-[4-(3-ethoxy-4-methoxyphenyl)-1,2,5-oxadiazol-3-yl]-3-methylbenzamide 51 showed high in vitro activity against the chloroquine-sensitive strain NF54 of P. falciparum (PfNF54 IC50 = 0.034 µM), resulting in a very promising selectivity index of 1526.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/chemistry , Malaria, Falciparum/drug therapy , Chloroquine/pharmacology , Malaria/drug therapy , Plasmodium falciparum , Structure-Activity Relationship
5.
Sci Rep ; 13(1): 14753, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679501

ABSTRACT

Honeybees are the most widespread managed pollinators of our food crops, and a crucial part of their well-being is a suitable diet. Yet, we do not know how they choose flowers to collect nectar or pollen from. Here we studied forty-three honeybee colonies in six apiaries over a summer, identifying the floral origins of honey and hive-stored pollen samples by DNA-metabarcoding. We recorded the available flowering plants and analyzed the specialized metabolites in honey. Overall, we find that honeybees use mostly the same plants for both nectar and pollen, yet per colony less than half of the plant genera are used for both nectar and pollen at a time. Across samples, on average fewer plant genera were used for pollen, but the composition was more variable among samples, suggesting higher selectivity for pollen sources. Of the available flowering plants, honeybees used only a fraction for either nectar or pollen foraging. The time of summer guided the plant choices the most, and the location impacted both the plants selected and the specialized metabolite composition in honey. Thus, honeybees are selective for both nectar and pollen, implicating a need of a wide variety of floral resources to choose an optimal diet from.


Subject(s)
Honey , Magnoliopsida , Bees , Animals , Plant Nectar , DNA Barcoding, Taxonomic , Pollen , DNA
6.
Phytochemistry ; 215: 113834, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648045

ABSTRACT

Silymarin, a mixture of diastereomeric and regioisomeric flavonolignans from milk thistle (Silybum marianum (L.) Gaertn.) fruits, is known to possess a panel of pharmacological activities. However, due to low water solubility and extensive phase II metabolism, the oral bioavailability of the flavonolignans is limited. Since their interaction with gut microbiome is likely due to their predominantly fecal excretion route, the biotransformation of milk thistle flavonolignans by gut microorganisms was studied. A 1:1 mixture of the two main silymarin flavonolignans silybins A and B was incubated in human fecal suspension from one donor for 24 h under anoxic conditions. Purification of the incubate allowed to isolate and structurally elucidate the two main metabolites as (2R, 3R)-2-{4-[2-(3,4-dihydroxy-phenyl)-(1R)-1-hydroxymethyl-ethoxy]-3-hydroxy-phenyl}-3,5,7-trihydroxy-chroman-4-one (a product of demethylation and dioxane ring cleavage) and demethylsilybin B. Furthermore, silymarin was incubated with human fecal suspension, and its biotransformation was monitored by means of LC-HRMS metabolite profiling. Apart from the two isolated and structurally elucidated metabolites, several types of biotransformation products could be annotated, including demethylation products, reduction/ring cleavage products, products of demethylation plus reduction/ring cleavage, as well as several low molecular weight aromatic metabolites. The potential pharmacological activities of these gut microbial metabolites deserve closer examination in the future.


Subject(s)
Microbiota , Silymarin , Humans , Silybum marianum , Silymarin/pharmacology , Fruit
7.
Pharm Biol ; 61(1): 1030-1040, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37409739

ABSTRACT

CONTEXT: Sea fennel (Crithmum maritimum L. [Apiaceae]) is an aromatic herb rich in bioactive molecules, such as polyphenols, with potential positive effects on human health. OBJECTIVE: This study aimed at the characterization of sea fennel secondary metabolites, focusing on the phenolic fraction. MATERIALS AND METHODS: Samples of whole sprouts, sole leaves and sole stems were subjected to accelerated solvent extraction with methanol, and the resulting extracts were analyzed by high­performance thin­layer chromatography, high-performance liquid chromatography, and liquid chromatography coupled with diode array detection and high-resolution mass spectrometry (LC-DAD-HRMS). RESULTS: HPTLC and HPLC analyses of sea fennel extracts showed similar chromatographic profiles among the tested samples, and the prevalence of chlorogenic acid within the phenolic fraction was verified. Ten hydroxycinnamic acids, including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A and isochlorogenic acid C, 11 flavonoid glycosides, e.g., rutin, hyperoside, isoquercitrin, two triterpene saponins and two hydroxylated fatty acids, were detected and annotated via liquid chromatography coupled with diode array detection and high-resolution mass spectrometry. DISCUSSION AND CONCLUSIONS: The use of accelerated solvent extraction and LC-DAD-HRMS for the characterization of sea fennel secondary metabolites allowed the annotation of seven compounds newly detected in sea fennel, including triterpene saponins and hydroxylated fatty acids.


Subject(s)
Apiaceae , Foeniculum , Saponins , Triterpenes , Humans , Foeniculum/chemistry , Chlorogenic Acid , Apiaceae/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Triterpenes/analysis , Solvents
8.
J Ethnopharmacol ; 309: 116328, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36870464

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osmanthus fragrans Lour. is a small ornamental tree native to the Southeastern parts of China. It is mainly cultivated because of its characteristic fragrance, and used in the food and perfume industry. Besides, its flowers are used in traditional Chinese medicine to treat a variety of diseases including those related to inflammation. AIM OF THE STUDY: The aim of the study was to investigate in more detail the anti-inflammatory properties of O. fragrans flowers, and to characterize their active principles and mechanisms of action. MATERIALS AND METHODS: O. fragrans flowers were successively extracted with n-hexane, dichloromethane and methanol. The extracts were further fractionated by chromatographic separation. COX-2 mRNA expression in PMA-differentiated, LPS-stimulated THP-1 cells was used as lead assay for activity-guided fractionation. The most potent fraction was chemically analyzed by LC-HRMS. The pharmacological activity was also evaluated in other inflammation-related in-vitro models, such as analysis of IL-8 secretion and E-selectin expression in HUVECtert cells and selective inhibition of COX-isoenzymes. RESULTS: n-Hexane and dichloromethane extracts of O. fragrans flowers significantly inhibited COX-2 (PTGS2) mRNA expression. Additionally, both extracts inhibited COX-2 enzyme activity, whereas COX-1 enzyme activity was affected to a significantly lower extent. Fractionation of the extracts led to a highly active, glycolipid-containing fraction. In total, 10 glycolipids were tentatively annotated by LC-HRMS. This fraction also inhibited LPS-induced COX-2 mRNA expression, IL-8 secretion and E-selectin expression. The effects were limited to LPS-induced inflammation and not observed when inflammatory genes were induced by TNF-α, IL-1ß or FSL-1. Since all these inducers of inflammation act via different receptors, it is likely that the fraction interferes with the binding of LPS to the TLR4-receptor, which mediates pro-inflammatory effects of LPS. CONCLUSION: Taken together, the results demonstrate the anti-inflammatory potential of O. fragrans flower extracts in general, and of the glycolipid-enriched fraction in particular. The effects of glycolipid-enriched fraction are potentially mediated via the inhibition of the TLR4 receptor complex.


Subject(s)
Interleukin-8 , Plant Extracts , Humans , Interleukin-8/genetics , Cyclooxygenase 2/genetics , Plant Extracts/therapeutic use , Lipopolysaccharides/toxicity , Glycolipids , E-Selectin/genetics , Methylene Chloride/adverse effects , Anti-Inflammatory Agents/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/prevention & control , RNA, Messenger/genetics
9.
Planta Med ; 89(8): 824-832, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35868331

ABSTRACT

The unambiguous identification of plant material is a prerequisite of rational phytotherapy. Misidentification can even cause serious health problems, as in the case of the Chinese medicinal herb Zicao. Commercial material labelled "Zicao" may be derived from the roots of Arnebia euchroma (ruan zicao), Lithospermum erythrorhizon (ying zicao), or Onosma paniculata (dian zicao). All of these roots contain shikonin derivatives as main bioactive constituents, but ying zicao and dian zicao contain also hepatotoxic pyrrolizidine alkaloids in high amounts. Therefore, the use of A. euchroma with a very low pyrrolizidine alkaloid content is desirable. Confusions of the species occur quite often, indicating an urgent need for an unambiguous identification method. Discrimination of 23 zicao samples has been achieved by analyses of the nuclear internal transcribed spacer ITS2 and trnL-F intergenic spacer of the chloroplast DNA. Data were analyzed using Bioedit, ClustalX, Mega 11 and BLAST. Results indicate that ITS2 barcoding can accurately distinguish Arnebia euchroma from their adulterants. Subsequently, an HPTLC method has been developed allowing a chemical discrimination of the most widely used species. (22E)-Ergosta-4,6,8(14),22-tetraen-3-one has been identified as characteristic marker compound, allowing an unambiguous discrimination of A. euchroma and L. erythrorhizon.


Subject(s)
DNA Barcoding, Taxonomic , Lithospermum , DNA Barcoding, Taxonomic/methods , DNA, Chloroplast , Lithospermum/genetics , DNA, Plant/genetics
10.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36558954

ABSTRACT

MMV's Malaria Box compound MMV030666 shows multi-stage activity against various strains of Plasmodium falciparum and lacks resistance development. To evaluate the importance of its diarylether partial structure, diarylthioethers and diphenylamines with varying substitution patterns were prepared. A number of evident structure-activity relationships were revealed. Physicochemical and pharmacokinetic parameters were determined experimentally (passive permeability) or calculated. Compared to the lead compound a diarylthioether was more active and less cytotoxic resulting in an excellent selectivity index of 850. In addition, pharmacokinetic and physicochemical parameters were improved.

11.
Molecules ; 27(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36235096

ABSTRACT

Quinones and quinols are secondary metabolites of higher plants that are associated with many biological activities. The oxidative dearomatization of phenols induced by hypervalent iodine(III) reagents has proven to be a very useful synthetic approach for the preparation of these compounds, which are also widely used in organic synthesis and medicinal chemistry. Starting from several substituted phenols and naphthols, a series of cyclohexadienone and naphthoquinone derivatives were synthesized using different hypervalent iodine(III) reagents and evaluated for their in vitro antiprotozoal activity. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. We found that benzyl naphthoquinone 5c was the most active and selective molecule against T. brucei rhodesiense (IC50 = 0.08 µM, SI = 275). Furthermore, the antiprotozoal assays revealed no specific effects. In addition, some key physicochemical parameters of the synthesised compounds were calculated.


Subject(s)
Antiprotozoal Agents , Iodine , Malaria, Falciparum , Naphthoquinones , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cyclohexenes , Humans , Hydroquinones/pharmacology , Indicators and Reagents , Naphthols/pharmacology , Naphthoquinones/pharmacology , Oxidative Stress , Parasitic Sensitivity Tests , Phenols/pharmacology , Plasmodium falciparum , Trypanosoma brucei rhodesiense
12.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144500

ABSTRACT

The ongoing development of more and more new psychoactive substances continues to be a huge problem in 2022 affecting the European and international drug market. Through slight alterations in the structure of illicit drugs, a way to circumvent the law is created, as the created derivatives serve as legal alternatives with similar effects. A common way of structure modification is the induction of a halogen residue. Recently, halogenated derivatives of the well-known designer drug 4-methylaminorex appeared on the market and are available in various online shops. In this study, three novel halogenated 4-methylaminorex derivatives, namely 4'-fluoro-4-methylaminorex, 4'-chloro-4-methylaminorex, and 4'-bromo-4-methylaminorex, were purchased online and characterized using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS), and chiral high-performance liquid chromatography with ultraviolet detection (HPLC-UV). These derivatives possess two stereogenic centers, and analyses revealed that all of them were present as a racemic mixture of the trans diastereomeric form.


Subject(s)
Designer Drugs , Illicit Drugs , Designer Drugs/chemistry , Halogens , Illicit Drugs/chemistry , Oxazoles/pharmacology
13.
Nutrients ; 14(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35631252

ABSTRACT

BACKGROUND: Various neurocognitive and mental health-related conditions have been associated with the gut microbiome, implicating a microbiome-gut-brain axis (MGBA). The aim of this systematic review was to identify, categorize, and review clinical evidence supporting medicinal plants for the treatment of mental disorders and studies on their interactions with the gut microbiota. METHODS: This review included medicinal plants for which clinical studies on depression, sleeping disorders, anxiety, or cognitive dysfunction as well as scientific evidence of interaction with the gut microbiome were available. The studies were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. RESULTS: Eighty-five studies met the inclusion criteria and covered thirty mental health-related medicinal plants with data on interaction with the gut microbiome. CONCLUSION: Only a few studies have been specifically designed to assess how herbal preparations affect MGBA-related targets or pathways. However, many studies provide hints of a possible interaction with the MGBA, such as an increased abundance of health-beneficial microorganisms, anti-inflammatory effects, or MGBA-related pathway effects by gut microbial metabolites. Data for Panax ginseng, Schisandra chinensis, and Salvia rosmarinus indicate that the interaction of their constituents with the gut microbiota could mediate mental health benefits. Studies specifically assessing the effects on MGBA-related pathways are still required for most medicinal plants.


Subject(s)
Gastrointestinal Microbiome , Plants, Medicinal , Anxiety , Anxiety Disorders , Humans , Mental Health
14.
Metabolites ; 12(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35448474

ABSTRACT

This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular inflammation-related assays. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data served as potentially activity-related candidates. Of these candidates, 65 were tentatively or unambiguously annotated. 7-Hydroxy-5,3',4',5'-tetramethoxyflavone and three bioflavonoids, as well as three C32- and one C34-acetylated polyhydroxy fatty acid, were isolated from Lonicera hypoglauca leaves for the first time, and their structures were fully or partially elucidated. Of the potentially active candidate compounds, 15 were subsequently subjected to pharmacological testing. Their activities could be experimentally verified in part, emphasizing the relevance of Lonicera species as a source of anti-inflammatory active constituents. However, some compounds also impaired the cell viability. Overall, the approach was found useful to narrow down the number of potentially bioactive constituents in the complex extracts investigated. In the future, the application of more refined concepts, such as extract prefractionation combined with bio-chemometrics, may help to further enhance the reliability of candidate selection.

15.
Phytomedicine ; 98: 153970, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35144138

ABSTRACT

BACKGROUND: The COVID-19 pandemic will continue to threaten our health care systems in the next years. In addition to vaccination there is a need for effective tools for prevention and treatment. Products from natural sources, like standardized plant extracts offer a wide range of antiviral effects and possible applications. PURPOSE: The aim of this study was to investigate, whether a sorbitol/lecithin-based throat spray containing concentrated green tea extract (sGTE) interacts with SARS-CoV-2 viral particles and additionally is capable to block the virus replication. STUDY DESIGN AND METHODS: The antiviral effect was studied in a VeroE6 cell culture model, including concentration/effect correlations and the biological mechanism of virus blockade, using the Wuhan type of SARS CoV-2 as well as its beta- and delta-mutations. In addition, the qualitative and quantitative tannin profile present on the oral mucosa after spray application has been investigated by LC-MS/MS and HPLC-DAD analyses of (-)-epigallocatechin-3-O-gallate (EGCG) and related catechin derivatives. RESULTS: The findings of this study demonstrate, that sGTE has strong neutralizing activity on SARS-CoV-2 resulting in an up to 6,3E+04-fold reduction of infectivity independent from the strain. The type of interaction of sGTE with surface proteins seems to be direct and non-specific concerning the viral surface protein structures and resembles the general non-specific activity of polyphenols. By HPLC-DAD analysis, eight catechins were identified in sGTE, with EGCG and (-)-epicatechin-3-O-gallate as the most abundant ones. The total content of catechin derivatives, calculated as catechin, was 76 g/100 g. LC-MS/MS and HPLC-DAD analyses of throat swabs after application of a sGTE spray have shown that the concentrations of green tea tannins in the pharyngeal mucosa are higher than the effective dose found in the in vitro studies with SARS-CoV-2, even 1 h after the last application. CONCLUSION: The findings of this study suggest that sGTE has strong neutralizing activity on SARS-CoV-2 independent from the strain (Wuhan strain, beta- or delta-variants). sGTE might be relevant for reduction of corresponding viral infections when periodically applied to mouth and throat.

16.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34832891

ABSTRACT

The 2-phenoxybenzamide 1 from the Medicines for Malaria Venture Malaria Box Project has shown promising multi-stage activity against different strains of P. falciparum. It was successfully synthesized via a retrosynthetic approach. Subsequently, twenty-one new derivatives were prepared and tested for their in vitro activity against blood stages of the NF54 strain of P. falciparum. Several insights into structure-activity relationships were revealed. The antiplasmodial activity and cytotoxicity of compounds strongly depended on the substitution pattern of the anilino partial structure as well as on the size of substituents. The diaryl ether partial structure had further impacts on the activity. Additionally, several physicochemical and pharmacokinetic parameters were calculated (log P, log D7.4 and ligand efficiency) or determined experimentally (passive permeability and CYP3A4 inhibition). The tert-butyl-4-{4-[2-(4-fluorophenoxy)-3-(trifluoromethyl)benzamido]phenyl}piperazine-1-carboxylate possesses high antiplasmodial activity against P. falciparum NF54 (PfNF54 IC50 = 0.2690 µM) and very low cytotoxicity (L-6 cells IC50 = 124.0 µM) resulting in an excellent selectivity index of 460. Compared to the lead structure 1 the antiplasmodial activity was improved as well as the physicochemical and some pharmacokinetic parameters.

17.
Antibiotics (Basel) ; 9(7)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650510

ABSTRACT

Carvotacetones (1-7) isolated from Sphaeranthus africanus were screened for their antimycobacterial and efflux pump (EP) inhibitory potential against the mycobacterial model strains Mycobacterium smegmatis mc2 155, Mycobacterium aurum ATCC 23366, and Mycobacterium bovis BCG ATCC 35734. The minimum inhibitory concentrations (MICs) of the carvotacetones were detected through high-throughput spot culture growth inhibition (HT-SPOTi) and microbroth dilution assays. In order to assess the potential of the compounds 1 and 6 to accumulate ethidium bromide (EtBr) in M. smegmatis and M. aurum, a microtiter plate-based fluorometric assay was used to determine efflux activity. Compounds 1 and 6 were analyzed for their modulating effects on the MIC of EtBr and the antibiotic rifampicin (RIF) against M. smegmatis. Carvotacetones 1 and 6 had potent antibacterial effects on M. aurum and M. bovis BCG (MIC ≤ 31.25 mg/L) and could successfully enhance EtBr activity against M. smegmatis. Compound 1 appeared as the most efficient agent for impairing the efflux mechanism in M. smegmatis. Both compounds 1 and 6 were highly effective against M. aurum and M. bovis BCG. In particular, compound 1 was identified as a valuable candidate for inhibiting mycobacterial efflux mechanisms and as a promising adjuvant in the therapy of tuberculosis or other non-tubercular mycobacterial infections.

18.
Phytomedicine ; 71: 153221, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32447246

ABSTRACT

BACKGROUND: STW 5 is a fixed herbal combination containing extracts from nine medicinal plants: bitter candytuft, greater celandine, garden angelica roots, lemon balm leaves, peppermint leaves, caraway fruits, licorice roots, chamomile flowers, and milk thistle fruit. STW 5 is a clinically proven treatment for functional dyspepsia and irritable bowel syndrome. PURPOSE: Using a static in vitro method, we simulated oral, gastric, and small intestinal digestion and analyzed the metabolic profile changes by UHPLC-HRMS to determine the impact of oro-gastro-intestinal digestion on STW 5 constituents. STUDY DESIGN AND METHODS: STW 5 was incubated according to the InfoGest consensus method. Samples of each digestive phase were analyzed by UHPLC-HRMS in ESI positive and negative modes. After data processing, background subtraction, and normalization, the peak areas of detectable compounds were compared to untreated reference samples and recovery ratios were calculated to monitor the metabolic profile of STW 5 during simulated digestion. RESULTS: Although the levels of some constituents were reduced, we did not observe complete degradation of any of the constituents of STW 5 upon in vitro digestion. We did not detect any new metabolites beyond increased levels of caffeic acid and liquiritigenin due to degradation of progenitor compounds. Changes observed in intestinal bioaccessibility ratios were mainly a result of isomerization, hydrolysis, protein binding, and low water solubility. CONCLUSION: The majority of STW 5 constituents are stable towards simulated in vitro digestion and can reach the colon to interact with gut microbiota if they remain unabsorbed in the upper intestinal tract.


Subject(s)
Chromatography, High Pressure Liquid/methods , Plant Extracts/pharmacokinetics , Plant Preparations/analysis , Plant Preparations/pharmacokinetics , Biological Availability , Digestion , Gastric Juice , In Vitro Techniques , Intestine, Small , Metabolome , Plant Extracts/analysis
19.
J Nat Prod ; 83(4): 918-926, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32129622

ABSTRACT

Oplopanax horridus and Panax ginseng are members of the plant family Araliaceae, which is rich in structurally diverse polyacetylenes. In this work, we isolated and determined structures of 23 aliphatic C17 and C18 polyacetylenes, of which five are new compounds. Polyacetylenes have a suitable scaffold for binding to PPARγ, a ligand-activated transcription factor involved in metabolic regulation. Using a reporter gene assay, their potential was investigated to activate PPARγ. The majority of the polyacetylenes showed at least some PPARγ activity, among which oplopantriol B 18-acetate (1) and oplopantriol B (2) were the most potent partial PPARγ activators. By employing in silico molecular docking and comparing the activities of structural analogues, features are described that are involved in PPARγ activation, as well as in cytotoxicity. It was found that the type of C-1 to C-2 bond, the polarity of the terminal alkyl chain, and the backbone flexibility can impact bioactivity of polyacetylenes, while diol structures with a C-1 to C-2 double bond showed enhanced cytotoxicity. Since PPARγ activators have antidiabetic and anti-inflammatory properties, the present results may help explain some of the beneficial effects observed in the traditional use of O. horridus extracts. Additionally, they might guide the polyacetylene-based design of future PPARγ partial agonists.


Subject(s)
Oplopanax/chemistry , PPAR gamma/agonists , Panax/chemistry , Polyynes/chemistry , Polyynes/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , HEK293 Cells , Humans , Hypoglycemic Agents/pharmacology , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Structure-Activity Relationship
20.
J Ethnopharmacol ; 245: 112153, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31408679

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Many medicinal plants have been traditionally used for the treatment of gastrointestinal disorders. According to the monographs published by the Committee on Herbal Medicinal Products (HMPC) at the European Medicines Agency, currently 44 medicinal plants are recommended in the European Union for the treatment of gastrointestinal disorders based on traditional use. The main indications are functional and chronic gastrointestinal disorders, such as functional dyspepsia and irritable bowel syndrome (IBS), and typical effects of these plants are stimulation of gastric secretion, spasmolytic and carminative effects, soothing effects on the gastrointestinal mucosa, laxative effects, adstringent or antidiarrheal activities, and anti-inflammatory effects. A possible interaction with human gut microbiota has hardly been considered so far, although it is quite likely. AIM OF THE STUDY: In this review, we aimed to identify and evaluate published studies which have investigated interactions of these plants with the gut microbiome. RESULTS: According to this survey, only a minor portion of the 44 medicinal plants considered in EMA monographs for the treatment of gastrointestinal diseases has been studied so far with regard to potential interactions with gut microbiota. We could identify eight relevant in vitro studies that have been performed with six of these medicinal plants, 17 in vivo studies performed in experimental animals involving seven of the medicinal plants, and three trials in humans performed with two of the plants. The most robust evidence exists for the use of inulin as a prebiotic, and in this context also the prebiotic activity of chicory root has been investigated quite intensively. Flaxseed dietary fibers are also known to be fermented by gut microbiota to short chain fatty acids, leading to prebiotic effects. This could cause a health-beneficial modulation of gut microbiota by flaxseed supplementation. In flaxseed, also other compound classes like lignans and polyunsaturated fatty acids are present, that also have been shown to interact with gut microbiota. Drugs rich in tannins and anthocyanins also interact intensively with gut microbiota, since these compounds reach the colon at high levels in unchanged form. Tannins and anthocyanins are intensively metabolized by certain gut bacteria, leading to the generation of small, bioavailable and potentially bioactive metabolites. Moreover, interaction with these compounds may exert a prebiotic-like effect on gut microbiota. Gut microbial metabolization has also been shown for certain licorice constituents, but their potential effects on gut microbiota still need to be investigated in detail. Only a limited amount of studies investigated the interactions of essential oil- and secoiridoid-containing drugs with human gut microbiota. However, other constituents present in some of these drugs, like curcumin (curcuma), shogaol (ginger), and rosmarinic acid have been shown to be metabolized by human gut microbiota, and preliminary data also indicate potential gut microbiome modulatory effects. To conclude, the interaction with gut microbiota is still not fully investigated for many herbal drugs traditionally used for gastrointestinal disorders, which offers a vast field for future research.


Subject(s)
Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome , Phytotherapy , Plants, Medicinal , Animals , European Union , Humans , Medicine, Traditional
SELECTION OF CITATIONS
SEARCH DETAIL
...