Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 9: 832248, 2022.
Article in English | MEDLINE | ID: mdl-35462781

ABSTRACT

An increase of the aging population with a decrease in the available nursing staff has been seen in recent years. These two factors combined present a challenging problem for the future and has since become a political issue in many countries. Technological advances in robotics have made its use possible in new application fields like care and thus it appears to be a viable technological avenue to address the projected nursing labor shortage. The introduction of robots in nursing care creates an active triangular collaboration between the patient, nurse, and robot, which makes this area significantly different from traditional human-robot interaction (HRI) settings. In this review, we identify 133 robotic systems addressing nursing. We classify them according to two schemes: 1) a technical classification extended to include both patient and nurse and 2) a novel data-derived hierarchical classification based on use cases. We then analyze their intersection and build a multidimensional view of the state of technology. With this analytical tool, we describe an observed skew of the distribution of systems and identify gaps for future research. We also describe a link between the novel hierarchical use case classification and the typical phases of nursing care from admission to recovery.

2.
Front Robot AI ; 8: 476084, 2021.
Article in English | MEDLINE | ID: mdl-33937343

ABSTRACT

Conceptual knowledge about objects is essential for humans, as well as for animals, to interact with their environment. On this basis, the objects can be understood as tools, a selection process can be implemented and their usage can be planned in order to achieve a specific goal. The conceptual knowledge, in this case, is primarily concerned about the physical properties and functional properties observed in the objects. Similarly tool-use applications in robotics require such conceptual knowledge about objects for substitute selection among other purposes. State-of-the-art methods employ a top-down approach where hand-crafted symbolic knowledge, which is defined from a human perspective, is grounded into sensory data afterwards. However, due to different sensing and acting capabilities of robots, a robot's conceptual understanding of objects (e.g., light/heavy) will vary and therefore should be generated from the robot's perspective entirely, which entails robot-centric conceptual knowledge about objects. A similar bottom-up argument has been put forth in cognitive science that humans and animals alike develop conceptual understanding of objects based on their own perceptual experiences with objects. With this goal in mind, we propose an extensible property estimation framework which consists of estimations methods to obtain the quantitative measurements of physical properties (rigidity, weight, etc.) and functional properties (containment, support, etc.) from household objects. This property estimation forms the basis for our second contribution: Generation of robot-centric conceptual knowledge. Our approach employs unsupervised clustering methods to transform numerical property data into symbols, and Bivariate Joint Frequency Distributions and Sample Proportion to generate conceptual knowledge about objects using the robot-centric symbols. A preliminary implementation of the proposed framework is employed to acquire a dataset comprising six physical and four functional properties of 110 household objects. This Robot-Centric dataSet (RoCS) is used to evaluate the framework regarding the property estimation methods and the semantics of the considered properties within the dataset. Furthermore, the dataset includes the derived robot-centric conceptual knowledge using the proposed framework. The application of the conceptual knowledge about objects is then evaluated by examining its usefulness in a tool substitution scenario.

3.
Front Robot AI ; 7: 541741, 2020.
Article in English | MEDLINE | ID: mdl-33501311

ABSTRACT

The integration of people with disabilities into the working world is an important, yet challenging field of research. While different inclusion efforts exist, people with disabilities are still under-represented in the open labor market. This paper investigates the approach of using a collaborative robot arm to support people with disabilities with their reintegration into the workplace. However, there is currently little literature about the acceptance of an industrial robot by people with disabilities and in cases where a robot leads to stress, fear, or any other form of discomfort, this approach is not feasible. For this reason, a first user study was performed in a sheltered workshop to investigate the acceptance of a robot arm by workers with disabilities. As a first step in this underdeveloped field, two main aspects were covered. Firstly, the reaction and familiarization to the robot arm within a study situation was closely examined in order to separate any effects that were not caused by the moving robot. Secondly, the reaction toward the robot arm during collaboration was investigated. In doing so, five different distances between the robot arm and the participants were considered to make collaboration in the workplace as pleasant as possible. The results revealed that it took the participants about 20 min to get used to the situation, while the robot was immediately accepted very well and did not cause fear or discomfort at any time. Surprisingly, in some cases, short distances were accepted even better than the larger distances. For these reasons, the presented approach showed to promise for future investigations.

4.
Front Robot AI ; 7: 561015, 2020.
Article in English | MEDLINE | ID: mdl-33501324

ABSTRACT

Ensuring care is one of the biggest humanitarian challenges of the future since an acute shortage in nursing staff is expected. At the same time, this offers the opportunity for new technologies in nursing, as the use of robotic systems. One potential use case is outpatient care, which nowadays involves traveling long distances. Here, the use of telerobotics could provide a major relief for the nursing staff, as it could spare them many of those-partially far-journeys. Since autonomous robotic systems are not desired at least in Germany for ethical reasons, this paper evaluates the design of a telemanipulation system consisting of off-the-shelf components for outpatient care. Furthermore, we investigated the suitability of two different input devices for control, a kinesthetic device, and a keyboard plus mouse. We conducted the investigations in a laboratory study. This laboratory represents a realistic environment of an elderly home and a remote care service center. It was carried out with 25 nurses. Tasks common in outpatient care, such as handing out things (manipulation) and examining body parts (set camera view), were used in the study. After a short training period, all nurses were able to control a manipulator with the two input devices and perform the two tasks. It was shown that the Falcon leads to shorter execution times (on average 0:54.82 min, compared to 01:10.92 min with keyboard and mouse), whereby the participants were more successful with the keyboard plus mouse, in terms of task completion. There is no difference in usability and cognitive load. Moreover, we pointed out, that the access to this kind of technology is desirable, which is why we identified further usage scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...