Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 16(3): e13270, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778582

ABSTRACT

In coastal marine ecosystems, kelp forests serve as a vital habitat for numerous species and significantly influence local nutrient cycles. Bull kelp, or Nereocystis luetkeana, is a foundational species in the iconic kelp forests of the northeast Pacific Ocean and harbours a complex microbial community with potential implications for kelp health. Here, we report the isolation and functional characterisation of 16 Nereocystis-associated bacterial species, comprising 13 Gammaproteobacteria, 2 Flavobacteriia and 1 Actinomycetia. Genome analyses of these isolates highlight metabolisms potentially beneficial to the host, such as B vitamin synthesis and nitrogen retention. Assays revealed that kelp-associated bacteria thrive on amino acids found in high concentrations in the ocean and in the kelp (glutamine and asparagine), generating ammonium that may facilitate host nitrogen acquisition. Multiple isolates have genes indicative of interactions with key elemental cycles in the ocean, including carbon, nitrogen and sulphur. We thus report a collection of kelp-associated microbial isolates that provide functional insight for the future study of kelp-microbe interactions.


Subject(s)
Ecosystem , Kelp , Whole Genome Sequencing , Kelp/microbiology , Kelp/metabolism , Kelp/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Nitrogen/metabolism , Genome, Bacterial , Pacific Ocean , Phylogeny , Gammaproteobacteria/genetics , Gammaproteobacteria/classification , Gammaproteobacteria/metabolism , Gammaproteobacteria/isolation & purification , Seawater/microbiology , Carbon/metabolism
2.
PLoS One ; 19(3): e0296622, 2024.
Article in English | MEDLINE | ID: mdl-38551914

ABSTRACT

Microbes contribute biologically available nitrogen to the ocean by fixing nitrogen gas from the atmosphere and by mineralizing organic nitrogen into bioavailable dissolved inorganic nitrogen (DIN). Although the large concentration of plants and algae in marine coastal environments provides ample habitat and reliable resources for microbial communities, the role of the microbiome in host-microbe nitrogen cycling remains poorly understood. We tested whether ammonification by epiphytic microbes increased water column ammonium and improved host access to nitrogen resources by converting organic nitrogen into inorganic nitrogen that is available for assimilation by hosts. When bull kelp (Nereocystis luetkeana) in the northeast Pacific was incubated with 15N labelled amino acid tracers, there was accumulation of 15N in kelp tissue, as well as accumulation of 15NH4 in seawater, all consistent with the conversion of dissolved organic nitrogen to ammonium. Metagenomic analysis of surface microbes from two populations of Nereocystis indicated relative similarity in the percentage of genes related to ammonification between the two locations, though the stressed kelp population that had lower tissue nitrogen and a sparser microbiome had greater ammonification rates. Microbial communities on coastal macrophytes may contribute to the nitrogen requirements of their hosts through metabolisms that make ammonium available.


Subject(s)
Ammonium Compounds , Kelp , Kelp/metabolism , Nitrogen/metabolism , Seawater/chemistry , Nitrogen Cycle , Plants/metabolism
3.
Sci Rep ; 13(1): 19996, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968499

ABSTRACT

Seagrasses are important primary producers in oceans worldwide. They live in shallow coastal waters that are experiencing carbon dioxide enrichment and ocean acidification. Posidonia oceanica, an endemic seagrass species that dominates the Mediterranean Sea, achieves high abundances in seawater with relatively low concentrations of dissolved inorganic nitrogen. Here we tested whether microbial metabolisms associated with P. oceanica and surrounding seawater enhance seagrass access to nitrogen. Using stable isotope enrichments of intact seagrass with amino acids, we showed that ammonification by free-living and seagrass-associated microbes produce ammonium that is likely used by seagrass and surrounding particulate organic matter. Metagenomic analysis of the epiphytic biofilm on the blades and rhizomes support the ubiquity of microbial ammonification genes in this system. Further, we leveraged the presence of natural carbon dioxide vents and show that the presence of P. oceanica enhanced the uptake of nitrogen by water column particulate organic matter, increasing carbon fixation by a factor of 8.6-17.4 with the greatest effect at CO2 vent sites. However, microbial ammonification was reduced at lower pH, suggesting that future ocean climate change will compromise this microbial process. Thus, the seagrass holobiont enhances water column productivity, even in the context of ocean acidification.


Subject(s)
Alismatales , Seawater , Seawater/chemistry , Carbon Dioxide/metabolism , Nitrogen/metabolism , Hydrogen-Ion Concentration , Ocean Acidification , Alismatales/metabolism , Mediterranean Sea , Water/metabolism , Ecosystem
4.
mSystems ; 7(5): e0059222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35993708

ABSTRACT

Coastal marine macrophytes exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their hosts through metabolisms that are unique to microbial taxa. Here, we characterized the metabolic functions of macrophyte-associated microbial communities using metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana) and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus, and Zostera marina), including the rhizomes of two surfgrass species (Phyllospadix spp.), the seagrass Zostera marina, and the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we describe 63 metagenome-assembled genomes (MAGs) that potentially benefit from being associated with macrophytes and may contribute to macrophyte fitness through their metabolic activity. Host-associated metagenomes contained genes for the use of dissolved organic matter from hosts and vitamin (B1, B2, B7, B12) biosynthesis in addition to a range of nitrogen and sulfur metabolisms that recycle dissolved inorganic nutrients into forms more available to the host. The rhizosphere of surfgrass and seagrass contained genes for anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite residing in a well-mixed and oxygenated environment. The range of oxygen environments engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial metabolisms and contributes to the functional capabilities of microbes and their influences on carbon and nitrogen cycling in nearshore ecosystems. IMPORTANCE Kelps, seagrasses, and surfgrasses are ecosystem engineers on rocky shorelines, where they show remarkably high levels of primary production. Through analysis of their associated microbial communities, we found a variety of microbial metabolisms that may benefit the host, including nitrogen metabolisms, sulfur oxidation, and the production of B vitamins. In turn, these microbes have the genetic capabilities to assimilate the dissolved organic compounds released by their macrophyte hosts. We describe a range of oxygen environments associated with surfgrass, including low-oxygen microhabitats in their rhizomes that host genes for nitrogen fixation. The tremendous productivity of coastal seaweeds and seagrasses is likely due in part to the activities of associated microbes, and an increased understanding of these associations is needed.


Subject(s)
Metagenome , Microbiota , Metagenome/genetics , Rhizosphere , Nitrogen/metabolism , Sulfur/metabolism
6.
mSystems ; 7(3): e0142221, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35642511

ABSTRACT

Eukaryotic organisms evolved in a microbial world and often have intimate associations with diverse bacterial groups. Kelp, brown macroalgae in the order Laminariales, play a vital role in coastal ecosystems, yet we know little about the functional role of the microbial symbionts that cover their photosynthetic surfaces. Here, we reconstructed 79 bacterial metagenome-assembled genomes (MAGs) from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine their metabolic potential and functional roles. Despite the annual life history of bull kelp, nearly half of the bacterial MAGs were detected across multiple years. Diverse members of the kelp microbiome, spanning 6 bacterial phyla, contained genes for transporting and assimilating dissolved organic matter (DOM), which is secreted by kelp in large quantities and likely fuels the metabolism of these heterotrophic bacteria. Bacterial genomes also contained alginate lyase and biosynthesis genes, involved in polysaccharide degradation and biofilm formation, respectively. Kelp-associated bacterial genomes contained genes for dissimilatory nitrate reduction and urea hydrolysis, likely providing a reduced source of nitrogen to the host kelp. The genome of the most abundant member of the kelp microbiome and common macroalgal symbiont, Granulosicoccus, contained a full suite of genes for synthesizing cobalamin (vitamin B12), suggesting that kelp-associated bacteria have the potential to provide their host kelp with vitamins. Finally, kelp-associated Granulosicoccus contained genes that typify the aerobic anoxygenic phototrophic bacteria, including genes for bacteriochlorophyll synthesis and photosystem II reaction center proteins, making them the first known photoheterotrophic representatives of this genus. IMPORTANCE Kelp (brown algae in the order Laminariales) are foundational species that create essential habitat in temperate and arctic coastal marine ecosystems. These photosynthetic giants host millions of microbial taxa whose functions are relatively unknown, despite their potential importance for host-microbe interactions and nutrient cycling in kelp forest ecosystems. We reconstructed bacterial genomes from metagenomic samples collected from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine the functional gene content of specific members of the kelp microbiome. These bacterial genomes spanned 6 phyla and 19 families and included common alga-associated microbial symbionts such as Granulosicoccus. Key functions encoded in kelp-associated bacterial genomes included dissolved organic matter assimilation, alginate metabolism, vitamin B12 biosynthesis, and nitrogen reduction from nitrate and urea to ammonium, potentially providing the host kelp with vitamins and reduced nitrogen.


Subject(s)
Kelp , Microbiota , Humans , Metagenome/genetics , Kelp/genetics , Dissolved Organic Matter , Nitrates/metabolism , Phylogeny , Microbiota/genetics , Bacteria , Vitamins/metabolism
7.
Microbiome ; 10(1): 52, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331334

ABSTRACT

BACKGROUND: Elucidating the spatial structure of host-associated microbial communities is essential for understanding taxon-taxon interactions within the microbiota and between microbiota and host. Macroalgae are colonized by complex microbial communities, suggesting intimate symbioses that likely play key roles in both macroalgal and bacterial biology, yet little is known about the spatial organization of microbes associated with macroalgae. Canopy-forming kelp are ecologically significant, fixing teragrams of carbon per year in coastal kelp forest ecosystems. We characterized the micron-scale spatial organization of bacterial communities on blades of the kelp Nereocystis luetkeana using fluorescence in situ hybridization and spectral imaging with a probe set combining phylum-, class-, and genus-level probes to localize and identify > 90% of the microbial community. RESULTS: We show that kelp blades host a dense microbial biofilm composed of disparate microbial taxa in close contact with one another. The biofilm is spatially differentiated, with clustered cells of the dominant symbiont Granulosicoccus sp. (Gammaproteobacteria) close to the kelp surface and filamentous Bacteroidetes and Alphaproteobacteria relatively more abundant near the biofilm-seawater interface. A community rich in Bacteroidetes colonized the interior of kelp tissues. Microbial cell density increased markedly along the length of the kelp blade, from sparse microbial colonization of newly produced tissues at the meristematic base of the blade to an abundant microbial biofilm on older tissues at the blade tip. Kelp from a declining population hosted fewer microbial cells compared to kelp from a stable population. CONCLUSIONS: Imaging revealed close association, at micrometer scales, of different microbial taxa with one another and with the host. This spatial organization creates the conditions necessary for metabolic exchange among microbes and between host and microbiota, such as provisioning of organic carbon to the microbiota and impacts of microbial nitrogen metabolisms on host kelp. The biofilm coating the surface of the kelp blade is well-positioned to mediate interactions between the host and surrounding organisms and to modulate the chemistry of the surrounding water column. The high density of microbial cells on kelp blades (105-107 cells/cm2), combined with the immense surface area of kelp forests, indicates that biogeochemical functions of the kelp microbiome may play an important role in coastal ecosystems. Video abstract.


Subject(s)
Kelp , Microbiota , Bacteria/genetics , Bacteroidetes , Carbon , In Situ Hybridization, Fluorescence , Seawater
8.
mSystems ; 7(1): e0137421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35014872

ABSTRACT

Whether a microbe is free-living or associated with a host from across the tree of life, its existence depends on a limited number of elements and electron donors and acceptors. Yet divergent approaches have been used by investigators from different fields. The "environment first" research tradition emphasizes thermodynamics and biogeochemical principles, including the quantification of redox environments and elemental stoichiometry to identify transformations and thus an underlying microbe. The increasingly common "microbe first" research approach benefits from culturing and/or DNA sequencing methods to first identify a microbe and encoded metabolic functions. Here, the microbe itself serves as an indicator for environmental conditions and transformations. We illustrate the application of both approaches to the study of microbiomes and emphasize how both can reveal the selection of microbial metabolisms across diverse environments, anticipate alterations to microbiomes in host health, and understand the implications of a changing climate for microbial function.


Subject(s)
Microbiota
9.
Ecology ; 102(9): e03455, 2021 09.
Article in English | MEDLINE | ID: mdl-34166524

ABSTRACT

Disturbance impacts the spatial distribution of primary producers, which can have cascading effects on ecosystem function. The lower-intertidal zone on the rocky shores of the Pacific Northwest is one such place where wave energy creates a mosaic-like distribution between two assemblages: surfgrass (Phyllospadix scouleri) meadows and macroalgal forests dominated by kelp. We simulated wave disturbance by experimentally removing patches of surfgrass monocultures, resulting in a macroalgal assemblage with increased diversity, biomass, and net primary productivity in the following year. Although surfgrass had a higher C:N compared to macroalgal assemblages, macroalgal assemblages achieved a higher biomass, fixed carbon at a faster rate, and released more dissolved organic carbon (DOC) during photosynthesis. Thus, despite similar standing amounts of carbon, macroalgal assemblages have increased carbon turnover-from fixation to DOC release. Comparative photophysiology indicated that surfgrasses have a competitive advantage over other macrophytes at low light levels, allowing them to persist when disturbance is reduced. Unexpectedly, disturbance in this system increased the potential for carbon sequestration when surfgrass monocultures were replaced by diverse macroalgae.


Subject(s)
Carbon , Ecosystem , Northwestern United States
10.
Am Nat ; 197(4): 486-501, 2021 04.
Article in English | MEDLINE | ID: mdl-33755541

ABSTRACT

AbstractPhenotypic plasticity is expected to facilitate the persistence of natural populations as global change progresses. The attributes of fluctuating environments that favor the evolution of plasticity have received extensive theoretical investigation, yet empirical validation of these findings is still in its infancy. Here, we combine high-resolution environmental data with a laboratory-based experiment to explore the influence of habitat pH fluctuation dynamics on the plasticity of gene expression in two populations of the Mediterranean mussel, Mytilus galloprovincialis. We linked differences in the magnitude and predictability of pH fluctuations in two habitats to population-specific gene expression profiles in ambient and stressful pH treatments. Our results demonstrate population-based differentiation in gene expression plasticity, whereby mussels native to a habitat exhibiting a large magnitude of pH fluctuations with low predictability display reduced phenotypic plasticity between experimentally imposed pH treatments. This work validates recent theoretical findings on evolution in fluctuating environments, suggesting that the predictability of fluctuating selection pressures may play a predominant role in shaping the phenotypic variation observed across natural populations.


Subject(s)
Adaptation, Physiological , Biological Evolution , Gene Expression , Mytilus/metabolism , Stress, Physiological , Animals , Hydrogen-Ion Concentration , Mytilus/genetics
11.
Environ Microbiol Rep ; 13(2): 176-184, 2021 04.
Article in English | MEDLINE | ID: mdl-33372322

ABSTRACT

We examined factors shaping community assembly of the bull kelp (Nereocystis luetkeana) microbiome by comparing microbial biofilm formation on photosynthetic kelp blade tissues and artificial kelp substrates ('agar substrates') deployed into a kelp forest. New kelp blade tissues were colonized by markedly distinct microbial taxa relative to agar substrates during the same time interval, even when agar substrates were infused with N. luetkeana blades, suggesting that microbial settlement onto kelp surfaces is more than just attraction to a polysaccharide-rich surface. Further, common seawater taxa such as Colwellia sp. and Psychromonas sp. became abundant on agar substrates but avoided new kelp blade tissues, indicating that host-specific factors may deter certain surface-associated marine microbial taxa. Over two-thirds of the bacterial taxa in the kelp microbiome were associated with strictly aerobic metabolisms; thus, photosynthetic production of O2 may favour aerobic microbial metabolisms. While living kelp blades primarily recruited aerobic microbes, including the obligate aerobe Granulosicoccus sp., microbes that colonized agar substrates were predominantly facultative anaerobes. We also found that infusion of kelp tissues into agar substrates altered microbial community composition and lowered taxonomic diversity relative to control agar substrates, suggesting that non-living components of the kelp blade also impact microbial community assembly.


Subject(s)
Alteromonadaceae , Kelp , Microbiota , Phaeophyceae , Oxygen
12.
Ecology ; 102(2): e03221, 2021 02.
Article in English | MEDLINE | ID: mdl-33048348

ABSTRACT

Canopy-forming kelps are foundational species in coastal ecosystems, fixing tremendous amounts of carbon, yet we know little about the ecological and physiological determinants of dissolved organic carbon (DOC) release by kelps. We examined DOC release by the bull kelp, Nereocystis luetkeana, in relation to carbon fixation, nutrient uptake, tissue nitrogen content, and light availability. DOC release was approximately 3.5 times greater during the day than at night. During the day, N. luetkeana blades released an average of 16.2% of fixed carbon as DOC. Carbon fixation increased with light availability but DOC release did not, leading to a lower proportion of fixed carbon released as DOC at high light levels. We found no relationship between carbon fixation and DOC release rates measured concurrently. Rather, DOC release by N. luetkeana blades declined with marginal significance as blade tissue nitrogen content increased and with experimental nitrate addition, supporting the role of stoichiometric relationships in DOC release. Using a stable isotope (13 C) tracer method, we demonstrated that inorganic carbon is rapidly fixed and released by N. luetkeana blades as 13 DOC, within hours. However, recently fixed carbon (13 DOC) comprised less than 20% of the total DOC released, indicating that isotope studies that rely on tracer production alone may underestimate total DOC release, as it is decoupled from recent kelp productivity. Comparing carbon and nitrogen assimilation dynamics of the annual kelp N. luetkeana with the perennial kelp Macrocystis pyrifera revealed that N. luetkeana had significantly higher carbon fixation, DOC production and nitrogen uptake rates per unit dry mass. Both kelp species were able to perform light-independent carbon fixation at night. Carbon fixation by the annual kelp N. luetkeana is as high as 2.35 kg C·m-2 ·yr-1 , but an average of 16% of this carbon (376 g C·m-2 ·yr-1 ) is released as DOC. As kelp forests are increasingly viewed as vehicles for carbon sequestration, it is important to consider the fate of this substantial quantity of DOC released by canopy-forming kelps.


Subject(s)
Kelp , Macrocystis , Phaeophyceae , Carbon , Ecosystem
14.
PLoS One ; 14(12): e0224214, 2019.
Article in English | MEDLINE | ID: mdl-31856201

ABSTRACT

Slag, waste from the steel-making process, contains large amounts of calcium, magnesium, iron and other heavy metals. Because of its composition, high pH and low water retention ability, slag is considered inhospitable to plants. Nevertheless, the spontaneously generated plant communities on slag are surprisingly diverse, but the assembly and structure of such communities are poorly studied. Previous studies suggest reduced rates of succession due to low growth rate and slow accumulation of topsoil. To investigate whether slag communities display similar patterns, we used two former industrial sites on the South Side of Chicago, IL, both with high pH (8-9.2) sand content (80%) and calcium concentration (> 9000 ppm). We removed all vegetation from both slag and non-slag plots to test whether recovery differed over one growing season (4 months). To directly assess plant growth, selected focal species were planted on both sites and harvested. We show that recovery from removal differed at slag and non-slag sites: the recruitment process on slag, measured by percent vegetative cover and number of species in plots, was significantly slower at 6-8 weeks of the manipulation and beyond, suggesting a potential stage-dependent effect of slag on plant growth. Certain slag plots recorded less cover than non-slag plots by >30% at maximum difference. Functional trait analysis found that graminoid and early successional species preferentially colonized slag. Overall, slag plots recovered more slowly from disturbance, suggesting a slow succession process that would hinder natural recovery. However, slag also has the potential to serve as plant refugia, hosting flora of analogous habitats native to the area: one of our industrial sites hosts nearly 80% native species with two species of highest Floristic Quality Index (10). Restoration efforts should be informed by the slow process of natural recovery, while post-industrial sites in urban areas serve as potential native plant refugia.


Subject(s)
Industrial Waste/analysis , Plant Development/physiology , Soil/chemistry , Chicago , Ecosystem , Industrial Waste/adverse effects , Metals, Heavy/analysis , Metals, Heavy/chemistry , Plants
15.
Ecology ; 100(10): e02798, 2019 10.
Article in English | MEDLINE | ID: mdl-31233610

ABSTRACT

Kelp forests are known as key habitats for species diversity and macroalgal productivity; however, we know little about how these biogenic habitats interact with seawater chemistry and phototroph productivity in the water column. We examined kelp forest functions at three locales along the Olympic Peninsula of Washington state by quantifying carbonate chemistry, nutrient concentrations, phytoplankton productivity, and seawater microbial communities inside and outside of kelp beds dominated by the canopy kelp species Nereocystis luetkeana and Macrocystis pyrifera. Kelp beds locally increased the pH, oxygen, and aragonite saturation state of the seawater, but lowered seawater inorganic carbon content and total alkalinity. Although kelp beds depleted nitrate and phosphorus concentrations, ammonium and dissolved organic carbon (DOC) concentrations were enhanced. Kelp beds also decreased chlorophyll concentrations and carbon fixed by phytoplankton, although kelp carbon fixation more than compensated for any difference in phytoplankton production. Kelp beds entrained distinct microbial communities, with higher taxonomic and phylogenetic diversity compared to seawater outside of the kelp bed. Kelp forests thus had significant effects on seawater chemistry, productivity and the microbial assemblages in their proximity. Thereby, the diversity of pathways for carbon and nitrogen cycling was also enhanced. Overall, these observations suggest that the contribution of kelp forests to nearshore carbon and nitrogen cycling is greater than previously documented.


Subject(s)
Kelp , Microbiota , Ecosystem , Phylogeny , Seawater , Washington
16.
Front Microbiol ; 10: 346, 2019.
Article in English | MEDLINE | ID: mdl-30863387

ABSTRACT

Canopy-forming kelps create underwater forests that are among the most productive marine ecosystems. On the Pacific coast of North America, two canopy-forming kelps with contrasting life histories co-occur; Macrocystis pyrifera, a perennial species, and Nereocystis luetkeana, an annual species. Kelp blade-associated microbes were sampled from 12 locations across a spatial gradient in Washington, United States, from the outer Pacific Coast to Puget Sound. Microbial communities were characterized using next-generation Illumina sequencing of 16S rRNA genes. At higher taxonomic levels (bacterial phylum and class), canopy-forming kelps hosted remarkably similar microbial communities, but at the amplicon sequence variant level, microbial communities on M. pyrifera and N. luetkeana were host-specific and distinct from free-living bacteria in the surrounding seawater. Microbial communities associated with blades of each kelp species displayed significant geographic variation. The microbiome of N. luetkeana changed along the spatial gradient and was significantly correlated to salinity, with outer Pacific coast sites enriched in Bacteroidetes (family Saprospiraceae) and Gammaproteobacteria (Granulosicoccus sp.), and southern Puget Sound sites enriched in Alphaproteobacteria (family Hyphomonadaceae). We also examined microbial community development and succession on meristematic and apical N. luetkeana blade tissues throughout the summer growing season on Tatoosh Island, WA. Across all dates, microbial communities were less diverse on younger, meristematic blade tissue compared to the older, apical tissues. In addition, phylogenetic relatedness among microbial taxa increased from meristematic to apical blade tissues, suggesting that the addition of microbial taxa to the community was a non-random process that selected for certain phylogenetic groups of microbes. Microbial communities on older, apical tissues displayed significant temporal variation throughout the summer and microbial taxa that were differentially abundant over time displayed clear patterns of community succession. Overall, we report that host species identity, geographic location, and blade tissue age shape the microbial communities on canopy-forming kelps.

17.
Glob Chang Biol ; 24(6): 2554-2562, 2018 06.
Article in English | MEDLINE | ID: mdl-29314468

ABSTRACT

Ocean acidification, a product of increasing atmospheric carbon dioxide, may already have affected calcified organisms in the coastal zone, such as bivalves and other shellfish. Understanding species' responses to climate change requires the context of long-term dynamics. This can be particularly difficult given the longevity of many important species in contrast with the relatively rapid onset of environmental changes. Here, we present a unique archival dataset of mussel shells from a locale with recent environmental monitoring and historical climate reconstructions. We compare shell structure and composition in modern mussels, mussels from the 1970s, and mussel shells dating back to 1000-2420 years BP. Shell mineralogy has changed dramatically over the past 15 years, despite evidence for consistent mineral structure in the California mussel, Mytilus californianus, over the prior 2500 years. We present evidence for increased disorder in the calcium carbonate shells of mussels and greater variability between individuals. These changes in the last decade contrast markedly from a background of consistent shell mineralogy for centuries. Our results use an archival record of natural specimens to provide centennial-scale context for altered minerology and variability in shell features as a response to acidification stress and illustrate the utility of long-term studies and archival records in global change ecology. Increased variability between individuals is an emerging pattern in climate change responses, which may equally expose the vulnerability of organisms and the potential of populations for resilience.


Subject(s)
Animal Shells/chemistry , Biomineralization , Climate Change , Minerals/analysis , Mytilus/chemistry , Seawater/chemistry , Animals , Seasons , Time Factors , Washington
18.
J Phycol ; 54(1): 1-11, 2018 02.
Article in English | MEDLINE | ID: mdl-29072316

ABSTRACT

Primary producers respond to climate directly and indirectly due to effects on their consumers. In the temperate coastal ocean, the highly productive brown algae known as kelp have both strong climate and grazer linkages. We analyzed the demographic response of the kelp Pleurophycus gardneri over a 25-year span to determine the interaction between ocean climate indicators and invertebrate infestation rates. Pleurophycus hosts amphipod species that burrow in the stipe, increasing mortality. Although kelp performance is generally greater with more negative values of the Pacific Decadal Oscillation (PDO) and colder seawater temperatures, Pleurophycus showed the opposite pattern. When we compared the 1990s, a period of positive values for the PDO and warmer sea surface temperatures, with the following decade, a period characterized by negative PDO values, we documented a contradictory outcome for proxies of kelp fitness. In the 1990s, Pleurophycus unexpectedly showed greater longevity, faster growth, greater reproductive effort, and a trend toward decreased amphipod infestation compared with the 2006-2012 period. In contrast, the period from 2006 to 2012 showed opposite kelp performance patterns and with a trend toward greater amphipod infestation. Pleurophycus performance metrics suggest that some coastal primary producers will respond differently to climate drivers, particularly if they interact strongly with grazers.


Subject(s)
Amphipoda/physiology , Climate Change , Food Chain , Herbivory , Kelp/growth & development , Animals , Oceans and Seas , Seasons , Seawater/chemistry
19.
Mol Ecol Resour ; 17(5): 931-942, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27997751

ABSTRACT

Plants in terrestrial and aquatic environments contain a diverse microbiome. Yet, the chloroplast and mitochondria organelles of the plant eukaryotic cell originate from free-living cyanobacteria and Rickettsiales. This represents a challenge for sequencing the plant microbiome with universal primers, as ~99% of 16S rRNA sequences may consist of chloroplast and mitochondrial sequences. Peptide nucleic acid clamps offer a potential solution by blocking amplification of host-associated sequences. We assessed the efficacy of chloroplast and mitochondria-blocking clamps against a range of microbial taxa from soil, freshwater and marine environments. While we found that the mitochondrial blocking clamps appear to be a robust method for assessing animal-associated microbiota, Proteobacterial 16S rRNA binds to the chloroplast-blocking clamp, resulting in a strong sequencing bias against this group. We attribute this bias to a conserved 14-bp sequence in the Proteobacteria that matches the 17-bp chloroplast-blocking clamp sequence. By scanning the Greengenes database, we provide a reference list of nearly 1500 taxa that contain this 14-bp sequence, including 48 families such as the Rhodobacteraceae, Phyllobacteriaceae, Rhizobiaceae, Kiloniellaceae and Caulobacteraceae. To determine where these taxa are found in nature, we mapped this taxa reference list against the Earth Microbiome Project database. These taxa are abundant in a variety of environments, particularly aquatic and semiaquatic freshwater and marine habitats. To facilitate informed decisions on effective use of organelle-blocking clamps, we provide a searchable database of microbial taxa in the Greengenes and Silva databases matching various n-mer oligonucleotides of each PNA sequence.


Subject(s)
Bacteria/classification , Bacteria/genetics , Metagenomics/methods , Microbiota , Plants/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
PLoS One ; 11(7): e0159062, 2016.
Article in English | MEDLINE | ID: mdl-27415005

ABSTRACT

Understanding functional trait distributions among organisms can inform impacts on and responses to environmental change. In marine systems, only 1% of dissolved inorganic carbon in seawater exists as CO2. Thus the majority of marine macrophytes not only passively access CO2 for photosynthesis, but also actively transport CO2 and the more common bicarbonate (HCO3-, 92% of seawater dissolved inorganic carbon) into their cells. Because species with these carbon concentrating mechanisms (CCMs) are non-randomly distributed in ecosystems, we ask whether there is a phylogenetic pattern to the distribution of CCMs among algal species. To determine macrophyte traits that influence carbon uptake, we assessed 40 common macrophyte species from the rocky intertidal community of the Northeast Pacific Ocean to a) query whether macrophytes have a CCM and b) determine the evolutionary history of CCMs, using ancestral state reconstructions and stochastic character mapping based on previously published data. Thirty-two species not only depleted CO2, but also concentrated and depleted HCO3-, indicative of a CCM. While analysis of CCMs as a continuous trait in 30 families within Phylum Rhodophyta showed a significant phylogenetic signal under a Brownian motion model, analysis of CCMs as a discrete trait (presence or absence) indicated that red algal families are more divergent than expected in their CCM presence or absence; CCMs are a labile trait within the Rhodophyta. In contrast, CCMs were present in each of 18 Ochrophyta families surveyed, indicating that CCMs are highly conserved in the brown algae. The trait of CCM presence or absence was largely conserved within Families. Fifteen of 23 species tested also changed the seawater buffering capacity, or Total Alkalinity (TA), shifting DIC composition towards increasing concentrations of HCO3- and CO2 for photosynthesis. Manipulating the external TA of the local environment may influence carbon availability in boundary layers and areas of low water mixing, offering an additional mechanism to increase CO2 availability.


Subject(s)
Carbon Dioxide/metabolism , Carbon/metabolism , Photosynthesis/physiology , Rhodophyta/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...