Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 13(23): 11076-82, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21566818

ABSTRACT

The structure of the electronic ground- and first excited state of mono-hydroxy [2.2]paracyclophane (MHPC) and the S(1)← S(0) electronic transition have been investigated by resonance-enhanced multiphoton ionisation (REMPI) and by quantum chemical spin-component-scaled-approximate coupled cluster second order (SCS-CC2) computations. The origin of the S(1)← S(0) transition was located at 30,772 cm(-1) (3.815 eV) in the REMPI spectrum. The value has to be compared with a computed excitation energy of 3.79 eV. The vibrational structure of the spectrum confirms a significant geometry change upon excitation along the coordinates corresponding to twist- and shift-motions in the molecule. It gives rise to an experimentally observed progression with a fundamental of +30 cm(-1) and an inverse anharmonicity. From the experimental data a shallow potential along the twist coordinate was derived for the S(1) state. For the shift vibration a wavenumber of +91 cm(-1) was observed, while +85 cm(-1) was computed. The ionisation energy of MHPC was determined to be 7.63 ± 0.05 eV using synchrotron radiation. When compared to earlier results on the parent compound [2.2]paracyclophane and pseudo-ortho-dihydroxy[2.2]paracyclophane it can be seen that already small variations in the substitution pattern have a significant impact on the shapes of the involved potential energy surfaces leading to strong variations in ground and excited state geometries and opto-electronic properties governing the exciton transfer processes.

2.
J Phys Chem A ; 115(15): 3583-91, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21446736

ABSTRACT

The structures and energetics of the ground and first excited states of [2.2]paracyclophane (PC) and its pseudo-para- (p-DHPC) and pseudo-ortho-dihydroxy (o-DHPC) as well as monohydroxy derivates (MHPC) are investigated by quantum chemical calculations, X-ray crystallography, and resonance-enhanced multiphoton ionization spectroscopy (REMPI) in a free jet. We show that substitution of the aromatic hydrogens in PC causes significant changes of the structure and in particular its change between the ground and the excited state. The structural changes include a breathing mode as well as shift and rotation of the benzene moieties and are rationalized by the electronic structure changes upon excitation. Spin-component-scaled second-order Møller-Plesset perturbation method (SCS-MP2) reproduces the experimental X-ray structure correctly and performs significantly better than ordinary MP2 and the B3LYP methods. The parent propagation method, SCS-approximate coupled cluster second order (SCS-CC2), yields adiabatic excitation energies within 0.1 eV of the experimental values for PC and the investigated hydroxyl derivates as well as the related aromatic molecules benzene and phenol. It is shown that zero-point vibration energy corrections at the time dependent density functional (B3LYP) level are no more accurate enough for that level of theory and have to be substituted by SCS-CC2 values. While the structures of PC and o-DHPC are only slightly modified upon excitation, p-DHPC changes its structural parameters substantially. This is in line with [1 + 1] REMPI-spectra of these substances, which are interpreted with the help of Franck-Condon simulations.


Subject(s)
Hydrocarbons, Aromatic/chemistry , Hydrocarbons, Aromatic/chemical synthesis , Models, Molecular , Photochemical Processes , Quantum Theory
3.
Phys Chem Chem Phys ; 12(32): 9339-46, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20589276

ABSTRACT

In this work we describe a study of the ground and first excited state structures and energetics of a dihydroxy-derivative of [2.2]paracyclophane (PC), the pseudo-ortho-dihydroxy[2.2]paracyclophane (o-DHPC), also termed 4,12-dihydroxy[2.2]paracyclophane. In order to understand the electronic interactions between the two pi-systems, the molecule is investigated by REMPI spectroscopy in a free jet and by quantum chemical calculations. REMPI-spectra of the cluster with one water molecule were also obtained and aid in the interpretation. The origin of the S(1) <-- S(0) transition lies at 31,483 cm(-1) (3.903 eV) for o-DHPC and 31,263 cm(-1) (3.876 eV) for the o-DHPC x H(2)O cluster. An adiabatic excitation energy of 3.87 eV was computed for the S(1) <-- S(0) transition in o-DHPC. The SCS-CC2 calculations deviate by less than 0.1 eV for the adiabatic excitation energies of PC, o-DHPC and the related aromatic molecules benzene and phenol. Considerable activity in a breathing vibration of 190 cm(-1) is found in the S(1) state of o-DHPC and o-DHPC x H(2)O, in agreement with the computed SCS-CC2 value of 185 cm(-1). Further vibrations appear at +11 cm(-1) and +54 cm(-1) in o-DHPC. The computations and the available experimental data of the parent PC show that both PC and o-DHPC are rather flexible with respect to motions of the benzene moieties.While PC has a double minimum potential energy with respect to the torsional motion, a single-minimum structure is found for the ground state of o-DHPC. The geometry change upon excitation is less pronounced in o-DHPC as compared to PC. Two of the three possible rotational conformers of the OH groups were found to have similar energies, but spectral hole burning shows that the spectra are dominated by a single rotamer.

4.
J Am Chem Soc ; 131(43): 15660-8, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19860479

ABSTRACT

Quantum chemical protocols explaining the crystal structures and the visible light absorption properties of 3,4:9,10-perylene tetracarboxylic acid bisimide (PBI) derivates are proposed. Dispersion-corrected density functional theory has provided an intermolecular potential energy of PBI dimers showing several energetically low-lying minima, which corresponds well with the packing of different PBI dyes in the solid state. While the dispersion interaction is found to be crucial for the binding strength, the minimum structures of the PESs are best explained by electrostatic interactions. Furthermore, a method is introduced, which reproduces the photon energies at the absorption maxima of PBI pigments within 0.1 eV. It is based on time-dependent Hartree-Fock (TD-HF) excitation energies calculated for PBI dimers with the next-neighbor arrangement in the pigment and incorporates crystal packing effects. This success provides clear evidence that the electronically excited states, which determine the color of these pigments, have no significant charge-transfer character. The developed protocols can be applied in a routine manner to understand and to predict the properties of such pigments, which are important materials for organic solar cells and (opto-)electronic devices.


Subject(s)
Imides/chemistry , Perylene/analogs & derivatives , Quantum Theory , Crystallization , Models, Molecular , Perylene/chemistry , Static Electricity
5.
J Am Chem Soc ; 130(39): 12858-9, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18767851

ABSTRACT

Access to excited-state structures and dynamics of pi-chromophor aggregates is needed to understand their fluorescence behavior and the properties of related materials. A quantum-chemistry-based protocol that provides quantitative and qualitative insight into fluorescence spectra has been applied to perylene bisimide dimers and provides excellent agreement with measured fluorescence spectra. Both dispersion and dipol-dipole interactions determine the preferred relative arrangements of the chromophores in ground and excited states of the dimer. An exciton trapping mechanism is identified, which may limit the energy transfer properties of perylene bisimide and other dye materials.


Subject(s)
Fluorescent Dyes/chemistry , Imides/chemistry , Perylene/analogs & derivatives , Dimerization , Perylene/chemistry , Quantum Theory , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...