Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Insect Physiol ; 45(9): 823-833, 1999 Sep.
Article in English | MEDLINE | ID: mdl-12770295

ABSTRACT

Having shown earlier that the larva of C. inanitus is essential in inducing the precocious onset of metamorphosis in polydnavirus/venom containing S. littoralis, we here analysed release of proteins by parasitoid larvae and their effects on host development. Parasitoid larvae released proteins in vivo and in vitro in a stage dependent manner. An approximately 212 kD protein was released from the mid 1st instar onwards and additional smaller proteins could be associated mainly with the 2nd and 3rd instar. When parasitoids were implanted into S. littoralis larvae, parasitoid-released proteins were seen 6 hr later. When parasitoids were removed from hosts, parasitoid-released proteins persisted in the host haemolymph for some time. Injection of antiserum against parasitoid-released proteins after removal of the parasitoid larva accelerated the disappearance of the 212 kD protein and reduced the number of larvae entering metamorphosis precociously. Repeated injections of concentrated parasitoid medium into polydnavirus/venom containing larvae caused a reduction of the head capsule width and formation of miniature 6th instar larvae; this effect was not seen in the absence of polydnavirus/venom. These observations suggest that proteins released by the parasitoid might play a role in modifying host metamorphosis in the presence of polydnavirus/venom, and the temporal appearance of the 212 kD protein makes it the most interesting candidate for being involved in such an effect.

2.
J Insect Physiol ; 45(4): 401-413, 1999 Apr.
Article in English | MEDLINE | ID: mdl-12770366

ABSTRACT

Physico-chemical analysis of juvenile hormones (JHs) of Spodoptera littoralis revealed highest quantities in the second half of embryonic development and in newly hatched 1st instar larvae. At these stages, mostly JH II, JH I and little JH III were found, while in later stages only JH II and JH III were found. Titres fluctuated in a similar manner in all larval instars, being lowest during the moults. In last (=6th) instar larvae, JHs disappeared in the late feeding-digging stage and again increased in the early prepupal stage. Parasitisation with Chelonus inanitus, a solitary egg-larval parasitoid which induces in its host the precocious onset of metamorphosis in the 5th instar, did not alter JH homologue composition but led to a disappearance of JHs in the 5th instar. Implantation of a parasitoid larva into early 5th instar larvae containing polydnavirus/venom caused a drop in the JH titre which indicates that the parasitoid larva plays an important role in the manipulation of the host's JH titre. In the parasitoid larva, only JH III was found; titres were highest in the 2nd larval instar, a stage when the host is in the 5th instar and contains almost no JHs. Thus, JHs of the parasitoid and the host fluctuate in an independent manner.

3.
J Insect Physiol ; 44(9): 817-831, 1998 Sep.
Article in English | MEDLINE | ID: mdl-12769877

ABSTRACT

In the first part we review the effects of larval endoparasitoids and their polydnavirus and venom on the immune system of their hosts. In all systems investigated, haemocyte spreading and encapsulation activity was reduced; in some cases effects on total (THC) or differential (DHC) haemocyte count as well as modification of haemocyte morphology and ultrastructure were also documented. In many cases polydnavirus (and venom) were shown to play a major role in abrogation of the host's immune reaction. In the second part we present the first investigation of effects of parasitism and polydnavirus/venom on the immune system of the host for an egg-larval parasitoid, Chelonus inanitus. We observed that in 4th and 5th instar larvae, i.e. 7 to 10 days after parasitization, neither haemocyte spreading and encapsulation activity, nor DHC, nor haemocyte ultrastructure were altered. After parasitization with X-ray irradiated wasps, which inject polydnavirus and venom and infertile eggs, there was no alteration of the above mentioned parameters. Nevertheless, parasitoid larvae implanted into 4th instar larvae which developed from eggs parasitized with X-ray irradiated wasps were not encapsulated, whereas co-injected latex beads were. These results show that parasitism by this egg-larval parasitoid does not generally suppress the host's immune system but that polydnavirus/venom injected at oviposition prevent, by, as yet unknown mechanisms, encapsulation of the parasitoid larva.

4.
J Insect Physiol ; 44(3-4): 305-321, 1998 Mar.
Article in English | MEDLINE | ID: mdl-12769965

ABSTRACT

As shown earlier, parasitization by the egg-larval parasitoid C. inanitus causes in its host the precocious onset of metamorphosis in the 5th instar followed by developmental arrest in the prepupal stage. Polydnavirus/venom were shown to be responsible for the developmental arrest. We investigated how polydnavirus/venom affect growth of the host larvae and found that head capsule widths were smaller from the 4th to 6th stadium and weights were lower in the 6th stadium in polydnavirus/venom-containing larvae than in non-parasitized larvae. In an attempt to identify endocrine parameters that are modified by polydnavirus/venom and might be responsible for the developmental arrest in the prepupa, we compared juvenile hormones, juvenile hormone esterase and ecdysteroids between non-parasitized and polydnavirus/venom-containing larvae from the 4th instar until pupation or developmental arrest, respectively. Obvious differences became manifest only in the 6th instar at the pupal cell formation stage, i.e. 12 days after entry of polydnavirus/venom into the host egg. Then, prothoracic glands of polydnavirus/venom-containing larvae released less ecdysteroids and ecdysteroid titres were lower than in non-parasitized larvae; this was followed by a delayed, reduced and desynchronized increase in prepupal juvenile hormones and juvenile hormone esterase and a slightly modified metabolism of ecdysone. This indicates that polydnavirus/venom affects the endocrine system of the host only after pupal commitment and that inhibition of prothoracic gland activity is the first detectable effect.

5.
J Gen Virol ; 75 ( Pt 12): 3353-63, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7996130

ABSTRACT

Ultrastructural analysis of the polydnavirus of the braconid wasp Chelonus inanitus revealed that virions consist of one cylindrical nucleocapsid enveloped by a single unit membrane. Nucleocapsids have a constant diameter of 33.7 +/- 1.4 nm and a variable length of between 8 and 46 nm. Spreading of viral DNA showed that the genome consists of circular dsDNA molecules of variable sizes and measurement of the contour lengths indicated sizes of between 7 and 31 kbp. When virions were exposed to osmotic shock conditions to release the DNA, only one circular molecule was released per particle suggesting that the various DNA molecules are singly encapsidated in this bracovirus. The viral genome was seen to consist of at least 10 different segments and the aggregate genome size is in the order of 200 kbp. By partial digestion of viral DNA with HindIII or EcoRI in the presence of ethidium bromide and subsequent ligation with HindIII-cut pSP65 or EcoRI-cut pSP64 and transfection into Escherichia coli, libraries of 103 HindIII and 23 EcoRI clones were obtained. Southern blots revealed that complete and unrearranged segments were cloned with this approach, and restriction maps for five segments were obtained. Part of a 16.8 kbp segment was sequenced, found to be AT-rich (73%) and to contain six copies of a 17 bp repeated sequence. The development of the female reproductive tract in the course of pupal-adult development of the wasp was investigated and seen to be strictly correlated with the pigmentation pattern. By the use of a semiquantitative PCR, replication of viral DNA was observed to initiate at a specific stage of pupal-adult development.


Subject(s)
Genome, Viral , Polydnaviridae/genetics , Virus Replication/physiology , Wasps/virology , Animals , Base Sequence , Cloning, Molecular , DNA, Circular/genetics , DNA, Circular/ultrastructure , DNA, Viral/genetics , DNA, Viral/ultrastructure , Female , Genomic Library , Male , Molecular Sequence Data , Ovary/virology , Oviducts/virology , Pigmentation , Polydnaviridae/chemistry , Polydnaviridae/physiology , Polydnaviridae/ultrastructure , Pupa/growth & development , Pupa/virology , Repetitive Sequences, Nucleic Acid , Restriction Mapping , Sequence Analysis, DNA , Virion/ultrastructure , Wasps/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...