Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 640-641: 1259-1271, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30021291

ABSTRACT

Managing saline water discharges from mining operations is a global environmental challenge. Measuring the location and extent of surface efflorescence can indicate solute movement before changes in electrical conductivity (EC) are detected in waterways. We hypothesised through the use of a case study that ground-based reflectance spectrometry and airborne hyperspectral (450-2500 nm) analysis of surface efflorescence could be a rapid method for monitoring large regions of the surrounding environment, including downstream of remote mines. X-ray diffraction and X-ray fluorescence were used to determine mineralogy and elemental composition of surface salts around a uranium mine. Salt samples were found to be mixtures of magnesium sulfate. The reflectance of field spectra varied depending on the hydration of the mineral, mainly hexahydrite and starkeyite. A constrained energy minimisation technique was used to match the field reflectance spectra to the airborne data. Airborne matches were confirmed at the field sampling sites and surrounds. Salts were also detected at lower matches at mine water irrigation areas where excess mine water had previously been applied. Hence, hyperspectral remote sensing is a potentially rapid and sensitive method for mapping magnesium sulfates over large areas in operating and rehabilitated mines. It was successfully demonstrated as a tool for monitoring and assessment of efflorescence as a result of saline processes.

2.
Sci Total Environ ; 468-469: 764-73, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24076500

ABSTRACT

Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered 'controllable' for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of (226)Ra soil activity concentration and (222)Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, (226)Ra soil activity concentrations, and (222)Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data.


Subject(s)
Gamma Rays/history , Mining , Models, Theoretical , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Algorithms , Geographic Information Systems , History, 20th Century , Northern Territory , Radium/analysis
3.
Environ Monit Assess ; 115(1-3): 531-54, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16649135

ABSTRACT

This article describes an airborne gamma survey of a 7 x 5 km region around the rehabilitated Nabarlek uranium mine in northern Australia. An unusually tight line spacing (100 m) and low aircraft height (50 m) were used, enabling the survey to distinguish man-made structures such as ponds and accommodation areas, as well as creek lines. Positive correlations between airborne data and ground-based readings enabled an estimation of the average absorbed dose rate arising from terrestrial gamma radiation over large areas of the site to be derived. For the fenced minesite area this estimate was 0.31 micro Gy hr(- 1). The airborne survey data were found to be invaluable in helping to plan further ground-level investigations and showed promise as an assessment tool for rehabilitated minesites.


Subject(s)
Air Pollutants, Radioactive/analysis , Mining , Radiation Monitoring/methods , Uranium , Australia , Mining/standards , Radiation Monitoring/instrumentation , Radiometry , Spectrometry, Gamma
SELECTION OF CITATIONS
SEARCH DETAIL
...