Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 45: 108617, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426023

ABSTRACT

The data provided allows other research groups to numerically investigate the flame wall interactions of an experimental test bench at the University of the Bundeswehr Munich. Numerical simulations can then be compared to the experimental results to test new models. Three data sets are available. The first data set contains the inflow boundary conditions created by the burner into the test section. The fields of interest are the velocity and RMS-velocity fields. Large-Eddy-Simulation (LES) using ANSYS Fluent was used to collect this data. The second data set provides the inflow boundary condition from the fuel injector into the test section using methane at a momentum ratio of I = 10. LES using OpenFOAM was used to create this data. The third data set provides the temperature distribution at the wall of the test section when injecting methane at a momentum ratio of I = 10. The temperature is provided along the wall ranging from +/- 25 mm in the lateral and 0 - 220 mm in the axial direction. The data was derived from wall-embedded thermocouples by applying the inverse heat conduction method using MATLAB and COMSOL.

2.
Photodiagnosis Photodyn Ther ; 29: 101613, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31812543

ABSTRACT

BACKGROUND: Singlet oxygen is known to be the main mediator of the photodynamic effect. The kinetics of its generation and deactivation allows for insights in the microenvironment and efficacy of the photodynamic effect. Therefore, it is highly desirable to perform direct and time resolved measurements of singlet molecular oxygen (1O2) as well as data analysis during the therapy. METHODS: In this work, tumors grown on the CAM of chicken embryos as well as blood vessels were scanned after injection of the photosensitizer Foslip®, yielding time resolved singlet molecular oxygen luminescence. Using a custom-made trifurcated fiber, it is possible to simultaneously detect time resolved NIR luminescence as well as spectrally resolved UV/VIS fluorescence. RESULTS: After photosensitizer application the singlet oxygen luminescence kinetics for tumors grown on the CAM of chicken embryos as well as for mixed venous and arterialized blood were recorded. Data was analyzed by traditional fitting as well as a novel and robust approach, reducing the time resolved data to a a meaningful minimum. Both approaches show the differences between blood of different oxygen saturation as well as tumor tissue. CONCLUSIONS: This work shows for the first time the possibility of deducing the oxygen content during photodynamic therapy by measuring singlet oxygen kinetics in tissue. If more oxygen is consumed - due to chemical quenching during PDT - than is subsequently diffused, oxygen depletion occurs, resulting in inefficiency of the photodynamic effect. These results represent a major step towards live monitoring of therapy success and thus towards the possibility of direct control of PDT efficiency in real time.


Subject(s)
Photochemotherapy , Singlet Oxygen , Animals , Chick Embryo , Luminescent Measurements , Oxygen , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
3.
Photochem Photobiol Sci ; 18(10): 2374-2380, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31380867

ABSTRACT

Mosquitoes are carriers of dangerous infectious disease pathogens all over the world. Owing to travelling and global warming, tropical disease-carrying species such as Aedes, Anopheles and Culex spread beyond tropical and subtropical zones, even to Europe. The aim of this study is to investigate the potential of photodynamic agents to combat mosquito larvae. Three different photosensitizers were tested on Chaoborus sp. larvae: TMPyP and TPPS as antimicrobial photosensitizers, and mTHPC as a PDT drug against eukaryotic animal and human cells. Chaoborus sp. is a commercially available harmless species developing translucent larvae similar to the larvae of Aedes, Anopheles and Culex. The uptake of photosensitizers by the larvae was tested by fluorescence microscopy. All tested photosensitizers were observed in the intestinal tract of the living larvae, and none of the photosensitizers was found in the larval tissues. In phototoxicity tests, mTHPC and TPPS did not have any effect on the larvae, while TMPyP killed the larvae efficiently. TPPS is an antimicrobial photosensitizer, mainly phototoxic to Gram-positive bacteria. TMPyP is well known as an efficient photosensitizer against Gram-negative bacteria like most species of the intestinal flora. From this result, we conclude that the photodynamic inactivation of the intestinal flora leads to the death of mosquito larvae. The feasibility of mosquito larvae control by photodynamic inactivation of their intestinal flora instead of the direct killing of the larvae is a promising alternative to other highly toxic insecticides. Compared to insecticides and other biochemical toxins, photosensitizers are not dark toxic. No resistance against photosensitizers is known so far. Thus, the dilution of the active substances by being distributed in the environment, which promotes the development of resistance in biocides of all kinds, does not pose danger. Thus, it reduces the potential side effects on environment and human health.


Subject(s)
Aedes/drug effects , Photosensitizing Agents/pharmacology , Aedes/growth & development , Animals , Intestines/drug effects , Larva/drug effects , Mosquito Control , Porphyrins/pharmacology
4.
Photodiagnosis Photodyn Ther ; 23: 325-330, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30026074

ABSTRACT

BACKGROUND: Direct singlet molecular oxygen detection is known to be a valuable tool for understanding photodynamic action. It could become useful for optimizing illumination schedules in photodynamic therapy. The method of time resolved singlet molecular oxygen luminescence detection can give insights into generation of singlet oxygen and its interaction with the environment and therefore possibly allows monitoring the treatments efficacy. Due to high requirements for sensitivity as well as time resolution it has not yet been used in situ. The latest improvements in the detection system make in vivo time resolved singlet molecular oxygen luminescence detection possible. METHODS: In this work, blood vessels in the chicken embryo CAM-model were scanned after injection of the photosensitizer Foslip®, yielding time resolved singlet molecular oxygen luminescence. A custom-made trifurcated fiber in combination with a dye laser, a photomultiplier tube and a fiber spectrometer was utilized for simultaneous excitation, singlet molecular oxygen luminescence and photosensitizer fluorescence detection. RESULTS: Singlet oxygen luminescence kinetics for mixed venous and arterialized blood in chicken embryos using the CAM-model were recorded. The data analysis resulted in two distinct and distinguishable photosensitizer triplet lifetimes corresponding to the high and low oxygen partial pressures in the oxygen-rich arterialized blood and oxygen-poor mixed venous blood. CONCLUSIONS: The sensitivity of direct singlet molecular oxygen luminescence detection to different oxygen partial pressures could be shown in vivo. Therefore, this study is a first step towards optimizing the illumination conditions of photodynamic treatment in situ by real time monitoring of the oxygen partial pressure within the target tissue.


Subject(s)
Oxygen/metabolism , Photosensitizing Agents/pharmacokinetics , Singlet Oxygen/analysis , Singlet Oxygen/metabolism , Animals , Chick Embryo , Lasers, Dye , Lasers, Solid-State , Mesoporphyrins , Photochemotherapy/methods
5.
Photodiagnosis Photodyn Ther ; 14: 204-10, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26987416

ABSTRACT

BACKGROUND: Singlet oxygen observation is considered a valuable tool to assess and optimize PDT treatment. In complex systems, such as tumors in vivo, only the direct, time-resolved singlet oxygen luminescence detection can give reliable information about generation and interaction of singlet oxygen. Up to now, evaluation of kinetics was not possible due to insufficient signal-to-noise ratio. Here we present high signal-to-noise ratio singlet oxygen luminescence kinetics obtained in mouse tumor model under PDT relevant conditions. METHODS: A highly optimized system based on a custom made laser diode excitation source and a high aperture multi-furcated fiber, utilizing a photomultiplier tube with a multi photon counting device was used. RESULTS: Luminescence kinetics with unsurpassed signal-to-noise ratio were gained from tumor bearing nude mice in vivo upon topic application, subcutaneous injection as well as intravenous injection of different photosensitizers (chlorin e6 and dendrimer formulations of chlorin e6). Singlet oxygen kinetics in appropriate model systems are discussed to facilitate the interpretation of complex kinetics obtained from in vivo tumor tissue. CONCLUSIONS: This is the first study addressing the complexity of singlet oxygen luminescence kinetics in tumor tissue. At present, further investigations are needed to fully explain the processes involved. Nevertheless, the high signal-to-noise ratio proves the applicability of direct time-resolved singlet oxygen luminescence detection as a prospective tool for monitoring photodynamic therapy.


Subject(s)
Photochemotherapy , Photosensitizing Agents/administration & dosage , Singlet Oxygen/analysis , Administration, Intravenous , Administration, Topical , Animals , Kinetics , Luminescent Measurements , Mice , Mice, Nude , Models, Animal , Photosensitizing Agents/therapeutic use , Signal-To-Noise Ratio , Singlet Oxygen/chemistry
6.
J Photochem Photobiol B ; 133: 39-46, 2014 Apr 05.
Article in English | MEDLINE | ID: mdl-24675635

ABSTRACT

The photodynamic effect, originally used in photodynamic therapy (PDT) for the treatment of different diseases, e.g. of cancer, has recently been introduced for the inactivation of bacteria. Mold fungi, which provoke health problems like allergies and diseases of the respiratory tract, are even more resistant and their biology is also very different. This study presents the development of four new photosensitizers, which, in combination with low doses of white light, inhibit the germination of mold fungi spores. Two of them even cause lethal damage to the conidia (spores) which are responsible for the spreading of mold fungi. The photoactivity of the newly synthesized corroles was obtained by their application on three different mold fungi: Aspergillus niger, Cladosporium cladosporoides, and Penicillium purpurgenum. To distinguish between inactivation of germination and permanent damage, the fungi were first incubated under illumination for examination of photosensitizer-induced growth inhibition and then left in darkness to test the survival of the conidia. None of the compounds displayed dark toxicity, but all of them attenuated or prevented germination when exposed to light, and the positively charged complexes induced a complete damage of the conidia.


Subject(s)
Aspergillus niger/drug effects , Cladosporium/drug effects , Penicillium/drug effects , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Antimony/chemistry , Aspergillus niger/physiology , Cladosporium/physiology , Crystallography, X-Ray , Light , Molecular Conformation , Penicillium/physiology , Phosphorus/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemical synthesis , Porphyrins/chemistry , Spores, Fungal/drug effects
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(6 Pt 1): 061310, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17280065

ABSTRACT

Granular materials are predominantly plastic, incrementally nonlinear, preparation-dependent, and anisotropic under shear. Nevertheless, their static stress distribution is well accounted for, in the whole range up to the point of failure, by a judiciously tailored isotropic nonanalytic elasticity theory termed granular elasticity. The first purpose of this paper is to carefully expound this view. Then granular elasticity is employed to consider the stress distribution in two-dimensional sand piles (or sand wedges). Starting from a uniform density, the pressure at the bottom of the pile is found to show a single central peak. It turns into a pressure dip, if some density inhomogeneity, with the center being less compact, is assumed. These two pressure distributions are remarkably similar to recent measurements, made in piles obtained, respectively, by rainlike pouring and funneling. In an accompanying paper, the stress distributions in silos and under point loads, calculated using the same method, are also found to agree with experiments.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(6 Pt 1): 061311, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17280066

ABSTRACT

An elastic-strain-stress relation, the result of granular elasticity as introduced in the preceding paper, is employed here to calculate the stress distribution (a) in cylindrical silos and (b) under point loads assuming uniform density. In silos, the ratio k{J} between the horizontal and vertical stress is found to be constant (as conjectured by Janssen) and given as k{J}=1-sin phi (with phi the Coulomb yield angle), in agreement with a construction industry standard usually referred to as the Jaky formula. Next, the stress distribution at the bottom of a granular layer exposed to a point force at its top is calculated. The results include both vertical and oblique point forces, which agree well with simulations and experiments using rainlike preparation. Moreover, the stress distribution of a sheared granular layer exposed to the same point force is calculated and again found in agreement with given data.

SELECTION OF CITATIONS
SEARCH DETAIL
...