Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 16(1): 155, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32448386

ABSTRACT

BACKGROUND: Bovine neonatal pancytopenia (BNP) is a haemorrhagic disease of neonatal calves. BNP was first described in Germany in 2009, later on also in other European countries, and in New Zealand in 2011. The disease is characterised by spontaneous bleeding, pancytopaenia in the bone marrow, and a high case fatality ratio. The causal role of a specific bovine viral diarrhoea virus (BVDV) vaccine (PregSure®BVD, then Pfizer Animal Health, now Zoetis, Berlin, Germany) has been established over the last years, causing the production of alloantibodies in some vaccinated cattle, which in the case of pregnant cattle, are transferred to the newborn calf via the colostrum. However, striking regional differences in the incidence of the disease were observed within Germany and other countries, but as the disease was not notifiable, no representative data on the spatial distribution are available. In this study, we address the spatial distribution and incidence of BNP using the results of two representative surveys amongst cattle practitioners in Bavaria, Germany. The surveys, asking about the occurrence of BNP, were conducted in 2009 and 2010. Answers were analysed spatially by testing for clusters using space-time models. Practitioners were also asked how many cows they serve in their practice and this number was used to estimate the incidence of BNP. Furthermore, in the survey of 2010, practitioners were also asked about usage of vaccine against BVDV. RESULTS: From the results of the surveys, three clusters were identified in Bavaria. These clusters also coincided with the usage of the specific BVDV vaccine as indicated by the veterinary practices. Furthermore, the representative surveys allow the estimation of the incidence of BNP to be in the order of 4 cases per 10,000 calves at risk. CONCLUSIONS: The study is the only representative survey conducted on BNP. Despite the fact that BNP is a non-infectious disease, regional clusters were identified.


Subject(s)
Cattle Diseases/epidemiology , Pancytopenia/veterinary , Vaccination/veterinary , Animals , Animals, Newborn , Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Cattle , Cattle Diseases/etiology , Germany/epidemiology , Incidence , Isoantibodies , Pancytopenia/epidemiology , Pancytopenia/immunology , Spatio-Temporal Analysis , Surveys and Questionnaires , Vaccination/statistics & numerical data , Viral Vaccines/administration & dosage
2.
Parasit Vectors ; 12(1): 580, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31829219

ABSTRACT

BACKGROUND: Parafilaria bovicola (Nematoda: Filariidae) causes cutaneous bleedings in bovine species. Flies serve as intermediate hosts. In recent years, reports on bovine parafilariosis have become more frequent, corroborating the necessity of reliable diagnostic interventions especially since no molecular or serological test has been available. We aimed to establish a polymerase chain reaction assay to detect DNA of P. bovicola in flies, skin biopsies and serohemorraghic exudates of bleeding spots. METHODS: PCRs targeting the cytochrome c oxidase subunit 1 (cox1) gene and the internal transcribed spacer region (ITS) of the ribosomal RNA gene cluster were evaluated for their diagnostic sensitivity as well as performance and specificity on biopsy and serohemorrhagic exudate samples from P. bovicola-infected cattle. RESULTS: Using serohemorrhagic exudates (n = 6), biopsies (n = 2) and flies (n = 1), the PCR targeting the cox1 gene resulted in a gel band of almost 700 bp. Cloning, sequencing, and removal of primer sequences yielded a 649-bp fragment of the P. bovicola cox1 gene. The PCR targeting the ITS region showed a band of about 1100 bp. Cloning, sequencing, and removal of primer sequences resulted in a 1083 bp stretch of the P. bovicola ITS region. Testing samples from presumably affected animals, the cox1-PCR resulted in bands with the expected size and they were all confirmed as P. bovicola by sequencing. In contrast, the ITS-PCR proved to be less sensitive and less specific and additionally amplified the ITS region of Musca domestica or buttercup DNA. When analysing for sensitivity, the cox1-PCR yielded visible bands up to 2 ng of genomic DNA, whereas the ITS-PCR produced bands up to 3 ng. In a plasmid dilution series, the minimum number of target DNA copies was 102 for the cox1-PCR and 101 in the ITS-PCR. CONCLUSIONS: The evaluated cox1-PCR enables reliable detection of P. bovicola DNA in skin biopsies and serohemorrhagic exudates. This PCR and, to a limited extent, the ITS-PCR, may help evaluate different therapeutic approaches. Furthermore, the cox1-PCR may be useful for epidemiological studies on the geographical distribution of P. bovicola. Further understanding of the epidemiology of this parasite will help develop and implement effective control strategies.


Subject(s)
Cattle Diseases/diagnosis , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Filariasis/veterinary , Filarioidea/isolation & purification , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Animals , Biopsy , Cattle , Cattle Diseases/parasitology , Exudates and Transudates/parasitology , Filariasis/diagnosis , Filariasis/parasitology , Filarioidea/enzymology , Filarioidea/genetics , Sensitivity and Specificity , Skin/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...