Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 5447, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710476

ABSTRACT

Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC.


Subject(s)
Antibodies, Monoclonal/pharmacology , Apolipoprotein A-I/pharmacology , Arthritis, Experimental/drug therapy , Hyperalgesia/drug therapy , Pain/drug therapy , Phosphatidylcholines/antagonists & inhibitors , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Calcium/metabolism , Calcium Signaling/drug effects , Collagen Type II/administration & dosage , Female , Gene Expression , HEK293 Cells , Hindlimb , Humans , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/pathology , Male , Nociception/drug effects , Nociception/physiology , Pain/chemically induced , Pain/metabolism , Pain/pathology , Patch-Clamp Techniques , Phosphatidylcholines/metabolism , Phosphatidylcholines/pharmacology , Rats , Rats, Inbred Lew , Rats, Wistar , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism
2.
PLoS One ; 8(5): e63564, 2013.
Article in English | MEDLINE | ID: mdl-23658840

ABSTRACT

The interplay of specific leukocyte subpopulations, resident cells and proalgesic mediators results in pain in inflammation. Proalgesic mediators like reactive oxygen species (ROS) and downstream products elicit pain by stimulation of transient receptor potential (TRP) channels. The contribution of leukocyte subpopulations however is less clear. Local injection of neutrophilic chemokines elicits neutrophil recruitment but no hyperalgesia in rats. In meta-analyses the monocytic chemoattractant, CCL2 (monocyte chemoattractant protein-1; MCP-1), was identified as an important factor in the pathophysiology of human and animal pain. In this study, intraplantar injection of CCL2 elicited thermal and mechanical pain in Wistar but not in Dark Agouti (DA) rats, which lack p47(phox), a part of the NADPH oxidase complex. Inflammatory hyperalgesia after complete Freund's adjuvant (CFA) as well as capsaicin-induced hyperalgesia and capsaicin-induced current flow in dorsal root ganglion neurons in DA were comparable to Wistar rats. Macrophages from DA expressed lower levels of CCR2 and thereby migrated less towards CCL2 and formed limited amounts of ROS in vitro and 4-hydroxynonenal (4-HNE) in the tissue in response to CCL2 compared to Wistar rats. Local adoptive transfer of peritoneal macrophages from Wistar but not from DA rats reconstituted CCL2-triggered hyperalgesia in leukocyte-depleted DA and Wistar rats. A pharmacological stimulator of ROS production (phytol) restored CCL2-induced hyperalgesia in vivo in DA rats. In Wistar rats, CCL2-induced hyperalgesia was completely blocked by superoxide dismutase (SOD), catalase or tempol. Likewise, inhibition of NADPH oxidase by apocynin reduced CCL2-elicited hyperalgesia but not CFA-induced inflammatory hyperalgesia. In summary, we provide a link between CCL2, CCR2 expression on macrophages, NADPH oxidase, ROS and the development CCL2-triggered hyperalgesia, which is different from CFA-induced hyperalgesia. The study further supports the impact of CCL2 and ROS as potential targets in pain therapy.


Subject(s)
Monocytes/cytology , Pain/immunology , Pain/metabolism , Reactive Oxygen Species/metabolism , Animals , Chemokine CCL2/metabolism , Chemokine CCL2/pharmacology , Chemotaxis/drug effects , Free Radical Scavengers/pharmacology , Gene Expression Regulation/drug effects , Hyperalgesia/chemically induced , Macrophages/cytology , Macrophages/drug effects , Male , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , NADPH Oxidases/metabolism , Pain/chemically induced , Rats , TRPV Cation Channels/metabolism
3.
J Pain ; 14(9): 897-910, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23683582

ABSTRACT

UNLABELLED: The chemokine C-C-chemokine ligand 2 (CCL2) (formerly known as MCP, macrophage chemotactic protein) is one of the important genes upregulated in different types of pain both in animals and humans. CCL2 governs the recruitment of C-C chemokine receptor 2-expressing monocytes into inflamed tissue. In contrast to neutrophilic chemokines, intraplantar injection of CCL2 in Wistar rats recruited macrophages and neutrophils and simultaneously lowered nociceptive thresholds. CCL2-induced hyperalgesia was abolished by prior systemic leukocyte depletion by cyclophosphamide and was reconstituted by local adoptive transfer of donor macrophages but not of neutrophils. Antagonists against transient receptor potential vannilloid 1 inhibited thermal and against transient receptor potential ankyrin 1 blocked mechanical hyperalgesia. Peripheral but not central activation of cyclooxygenase-2 (Cox-2) were critical for CCL2-induced hyperalgesia. In vitro CCL2 did not directly stimulate Cox-2 expression or prostaglandin E2 formation but slightly enhanced the formation of reactive oxygen species in monocytes and macrophages. In vivo, increased immunoreactivity for 4-hydroxy-2-nonenal (4-HNE), a downstream product of reactive oxygen species and known inducer of Cox-2, was observed and colocalized with Cox-2 in ED1 (CD68) positive infiltrating cells. No hyperalgesia, 4-HNE, or Cox-2 immunoreactivity was seen in leukocyte-depleted rats that were reconstituted with macrophages in the absence of CCL2, supporting the important role of CCL2. PERSPECTIVE: CCL2 plays a dual role: 1) promoting monocyte/macrophage recruitment into tissue; and 2) potentially stimulating macrophages in the tissue to produce 4-HNE and subsequently Cox-2, all resulting in the induction of hyperalgesia via transient receptor potential vannilloid 1 and transient receptor potential ankyrin 1. This encourages pharmacological efforts targeting CCL2/C-C chemokine receptor 2 and macrophages for treatment of inflammatory pain.


Subject(s)
Chemokine CCL2/toxicity , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Immunosuppressive Agents/toxicity , Leukocytes/drug effects , Pain Threshold/drug effects , Aldehydes/pharmacology , Animals , Ciguatoxins/toxicity , Cyclophosphamide/toxicity , Dose-Response Relationship, Drug , Hot Temperature/adverse effects , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Physical Stimulation/adverse effects , Pyrazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Reaction Time/drug effects , Reactive Oxygen Species/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Time Factors
4.
Proc Natl Acad Sci U S A ; 109(29): E2018-27, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22733753

ABSTRACT

Selective targeting of sensory or nociceptive neurons in peripheral nerves remains a clinically desirable goal. Delivery of promising analgesic drugs is often impeded by the perineurium, which functions as a diffusion barrier attributable to tight junctions. We used perineurial injection of hypertonic saline as a tool to open the perineurial barrier transiently in rats and elucidated the molecular action principle in mechanistic detail: Hypertonic saline acts via metalloproteinase 9 (MMP9). The noncatalytic hemopexin domain of MMP9 binds to the low-density lipoprotein receptor-related protein-1, triggers phosphorylation of extracellular signal-regulated kinase 1/2, and induces down-regulation of the barrier-forming tight junction protein claudin-1. Perisciatic injection of any component of this pathway, including MMP9 hemopexin domain or claudin-1 siRNA, enables an opioid peptide ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin) and a selective sodium channel (NaV1.7)-blocking toxin (ProToxin-II) to exert antinociceptive effects without motor impairment. The latter, as well as the classic TTX, blocked compound action potentials in isolated nerves only after disruption of the perineurial barrier, which, in return, allowed endoneurally released calcitonin gene-related peptide to pass through the nerve sheaths. Our data establish the function and regulation of claudin-1 in the perineurium as the major sealing component, which could be modulated to facilitate drug delivery or, potentially, reseal the barrier under pathological conditions.


Subject(s)
Analgesics/administration & dosage , Drug Delivery Systems/methods , Gene Expression Regulation/drug effects , Matrix Metalloproteinase 9/metabolism , Peripheral Nerves/metabolism , Saline Solution, Hypertonic/administration & dosage , Analgesics/metabolism , Animals , Blotting, Western , Claudin-1 , Dielectric Spectroscopy , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescent Antibody Technique , Matrix Metalloproteinase 9/pharmacology , Membrane Proteins/metabolism , Pain Threshold/drug effects , Phosphorylation , RNA, Small Interfering/genetics , Rats , Saline Solution, Hypertonic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...