Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 82(4): 386-390, 1998 Apr.
Article in English | MEDLINE | ID: mdl-30856886

ABSTRACT

A sensitive measure of soil inoculum potential is needed to evaluate field management of common root rot (Aphanomyces euteiches) in peas (Pisum sativum). A modified rolled-towel (RT) bioassay had been proposed to measure soil inoculum potential in fine-textured soils used for pea production in Minnesota. Homogenized soil was used because organic debris containing the inoculum could not be separated by wet sieving. The poor precision prompted an evaluation of procedures to improve this modified RT bioassay. Seed treatment with a 5% solution of sodium hypochlorite before pea seed germination and plant isolation procedures during the RT bioassay preparation/incubation reduced seedborne contamination and seedling loss to less than 5%. Tests conducted with pasteurized soil that was artificially infested with oospores showed the region of the pea taproot 1 to 2 cm below the seed to be more susceptible to infection (33% compared with 15% infected seedlings) than the region 1 to 2 cm above the root tip. A soil volume of 1.0 cm3 increased inoculum potential compared with 0.5 cm3 applied to each seedling but did not influence the random error; the 40-seedling compared with the 20-seedling RT bioassay reduced random error from 18 to 12%. The modified RT bioassay conducted on soil that was artificially infested after steam treatment or without steam treatment showed superior performance when using 40 seedlings compared with 20 seedlings when evaluated for accuracy and precision. Multiple infection theory demonstrated more multiple infections in the RT bioassay with a 0.5 cm3 soil volume applied to each seedling, which shows that soil mass is a factor preventing a higher percentage of infected seedlings. These modifications to the RT bioassay improved the method enough to reduce the random error by one-half compared with using homogenized soil without the proposed modifications.

2.
Oecologia ; 86(3): 349-358, 1991 May.
Article in English | MEDLINE | ID: mdl-28312920

ABSTRACT

The species composition of vesicular-arbuscular mycorrhizal (VAM) fungal communities changed during secondary succession of abandoned fields based on a field to forest chronosequence. Twenty-five VAM fungal species were identified. Seven species were clearly early successional and five species were clearly late successional. The total number of VAM fungal species did not increase with successional time, but diversity as measured by the Shannon-Wiener index tended to increase, primarily because the community became more even as a single species, Glomus aggregatum, became less dominant in the older sites. Diversity of the VAM fungal community was positively correlated with soil C and N. The density of VAM fungi, as measured by infectivity and total spore count, first increased with time since abandonment and then decreased in the late successional forest sites. Within 12 abandoned fields, VAM fungal density increased with increasing soil pH, H2O soluble soil C, and root biomass, but was inversely related to extractable soil P and percent cover of non-host plant species. The lower abundance of VAM fungi in the forest sites compared with the field sites agrees with the findings of other workers and corresponds with a shift in the dominant vegetation from herbaceous VAM hosts to woody ectomycorrhizal hosts.

SELECTION OF CITATIONS
SEARCH DETAIL
...