Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(21): 37957-37970, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258374

ABSTRACT

Evaporated charge extraction layers from organic molecular materials are vital in perovskite-based solar cells. For opto-electronic device optimization their complex refractive indices must be known for the visible and near infrared wavelength regime; however, accurate determination from thin organic films below 50 nm can be challenging. By combining spectrophotometry, variable angle spectroscopic ellipsometry, and X-ray reflectivity with an algorithm that simultaneously fits all available spectra, the complex refractive index of evaporated Spiro-TTB and C60 layers is determined with high accuracy. Based on that, an optical losses analysis for perovskite silicon solar cells shows that 15 nm of Spiro-TTB in the front of a n-i-p device reduces current by only 0.1 mA/cm2, compared to a substantial loss of 0.5 mA/cm2 due to 15 nm of C60 in a p-i-n device. Optical device simulation predicts high optical generation current densities of 19.7 and 20.1 mA/cm2 for the fully-textured, module-integrated p-i-n and n-i-p devices, respectively.

2.
Opt Express ; 27(16): 22209-22225, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510518

ABSTRACT

Thin film growth of ${\textrm{TiO}}_2$TiO2 by physical vapor deposition processes is simulated in the Virtual Coater framework resulting in virtual thin films. The simulations are carried out for artificial, simplified deposition conditions as well as for conditions representing a real coating process. The study focuses on porous films which exhibit a significant anisotropy regarding the atomistic structure and consequently, to the index of refraction. A method how to determine the effective anisotropic index of refraction of virtual thin films by the effective medium theory is developed. The simulation applies both, classical molecular dynamics as well as kinetic Monte Carlo calculations, and finally the properties of the virtual films are compared to experimentally grown films especially analyzing the birefringence in the evaluation.

3.
Materials (Basel) ; 12(2)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30650608

ABSTRACT

The crystallisation of sputter-deposited, amorphous In2O3:H films was investigated. The influence of deposition and crystallisation parameters onto crystallinity and electron hall mobility was explored. Significant precipitation of metallic indium was discovered in the crystallised films by electron energy loss spectroscopy. Melting of metallic indium at ~160 °C was suggested to promote primary crystallisation of the amorphous In2O3:H films. The presence of hydroxyl was ascribed to be responsible for the recrystallization and grain growth accompanying the inter-grain In-O-In bounding. Metallic indium was suggested to provide an excess of free electrons in as-deposited In2O3 and In2O3:H films. According to the ultraviolet photoelectron spectroscopy, the work function of In2O3:H increased during crystallisation from 4 eV to 4.4 eV, which corresponds to the oxidation process. Furthermore, transparency simultaneously increased in the infraredspectral region. Water was queried to oxidise metallic indium in UHV at higher temperature as compared to oxygen in ambient air. Secondary ion mass-spectroscopy results revealed that the former process takes place mostly within the top ~50 nm. The optical band gap of In2O3:H increased by about 0.2 eV during annealing, indicating a doping effect. This was considered as a likely intra-grain phenomenon caused by both (In°)O•• and (OH-)O• point defects. The inconsistencies in understanding of In2O3:H crystallisation, which existed in the literature so far, were considered and explained by the multiplicity and disequilibrium of the processes running simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL
...