Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 31(3): e2269, 2021 04.
Article in English | MEDLINE | ID: mdl-33277745

ABSTRACT

Disturbances play a key role in driving forest ecosystem dynamics, but how disturbances shape wildlife habitat across space and time often remains unclear. A major reason for this is a lack of information about changes in habitat suitability across large areas and longer time periods. Here, we use a novel approach based on Landsat satellite image time series to map seasonal habitat suitability annually from 1986 to 2017. Our approach involves characterizing forest disturbance dynamics using Landsat-based metrics, harmonizing these metrics through a temporal segmentation algorithm, and then using them together with GPS telemetry data in habitat models. We apply this framework to assess how natural forest disturbances and post-disturbance salvage logging affect habitat suitability for two ungulates, roe deer (Capreolus capreolus) and red deer (Cervus elaphus), over 32 yr in a Central European forest landscape. We found that red and roe deer differed in their response to forest disturbances. Habitat suitability for red deer consistently improved after disturbances, whereas the suitability of disturbed sites was more variable for roe deer depending on season (lower during winter than summer) and disturbance agent (lower in windthrow vs. bark-beetle-affected stands). Salvage logging altered the suitability of bark beetle-affected stands for deer, having negative effects on red deer and mixed effects on roe deer, but generally did not have clear effects on habitat suitability in windthrows. Our results highlight long-lasting legacy effects of forest disturbances on deer habitat. For example, bark beetle disturbances improved red deer habitat suitability for at least 25 yr. The duration of disturbance impacts generally increased with elevation. Methodologically, our approach proved effective for improving the robustness of habitat reconstructions from Landsat time series: integrating multiyear telemetry data into single, multi-temporal habitat models improved model transferability in time. Likewise, temporally segmenting the Landsat-based metrics increased the temporal consistency of our habitat suitability maps. As the frequency of natural forest disturbances is increasing across the globe, their impacts on wildlife habitat should be considered in wildlife and forest management. Our approach offers a widely applicable method for monitoring habitat suitability changes caused by landscape dynamics such as forest disturbance.


Subject(s)
Deer , Ecosystem , Animals , Animals, Wild , Forests , Seasons
2.
Nat Plants ; 5(1): 47-53, 2019 01.
Article in English | MEDLINE | ID: mdl-30598534

ABSTRACT

Tropical forests continue to undergo a rapid transformation. The expansion of rubber tree (Hevea brasiliensis) plantations has been reported as a major driver of forest loss, linked to a boom in market demand. Distant commodity markets have spurred a surge of large-scale economic land concessions granted throughout tropical Southeast Asia. Using satellite imagery, we show the impact of rubber tree plantations on Cambodian forest cover and analyse how annual forest-to-rubber conversion rates relate to global rubber prices from 2001 to 2015. We found that 23.5 ± 1.8% of national forest cover was cleared in this period, with 23.2 ± 3.6% of cleared forest converted to rubber plantations. Annual forest-to-rubber conversion rates closely correlated with global rubber prices, with a time lag of 8-9 months (Pearson's r = 0.93). Our results reveal a strong link between global commodity markets and tropical forest loss, particularly in countries with land policies geared towards rapid development.


Subject(s)
Conservation of Natural Resources/economics , Conservation of Natural Resources/statistics & numerical data , Rubber/economics , Cambodia , Commerce , Conservation of Natural Resources/trends , Hevea , Interrupted Time Series Analysis , Satellite Imagery/methods , Tropical Climate
3.
Nat Commun ; 9(1): 4978, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478255

ABSTRACT

Mortality is a key indicator of forest health, and increasing mortality can serve as bellwether for the impacts of global change on forest ecosystems. Here we analyze trends in forest canopy mortality between 1984 and 2016 over more than 30 Mill. ha of temperate forests in Europe, based on a unique dataset of 24,000 visually interpreted spectral trajectories from the Landsat archive. On average, 0.79% of the forest area was affected by natural or human-induced mortality annually. Canopy mortality increased by +2.40% year-1, doubling the forest area affected by mortality since 1984. Areas experiencing low-severity mortality increased more strongly than areas affected by stand-replacing mortality events. Changes in climate and land-use are likely causes of large-scale forest mortality increase. Our findings reveal profound changes in recent forest dynamics with important implications for carbon storage and biodiversity conservation, highlighting the importance of improved monitoring of forest mortality.


Subject(s)
Forests , Plant Leaves/physiology , Climate , Europe
4.
ISPRS J Photogramm Remote Sens ; 130: 453-463, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28860678

ABSTRACT

Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr-1 to 0.95% yr-1, and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.

5.
Sci Rep ; 7(1): 1375, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28465582

ABSTRACT

Despite rapid advances and large-scale initiatives in forest mapping, reliable cross-border information about the status of forest resources in Central Asian countries is lacking. We produced consistent Central Asia forest cover (CAFC) maps based on a cost-efficient approach using multi-resolution satellite imagery from Landsat and MODIS during 2009-2011. The spectral-temporal metrics derived from 2009-2011 Landsat imagery (overall accuracy of 0.83) was used to predict sub-pixel forest cover on the MODIS scale for 2010. Accuracy assessment confirmed the validity of MODIS-based forest cover map with a normalized root-mean-square error of 0.63. A general paucity of forest resources in post-Soviet Central Asia was indicated, with 1.24% of the region covered by forest. In comparison to the CAFC map, a regional map derived from MODIS Vegetation Continuous Fields tended to underestimate forest cover, while the Global Forest Change product matched well. The Global Forest Resources Assessments, based on individual country reports, overestimated forest cover by 1.5 to 147 times, particularly in the more arid countries of Turkmenistan and Uzbekistan. Multi-resolution imagery contributes to regionalized assessment of forest cover in the world's drylands while developed CAFC maps (available at https://data.zef.de/ ) aim to facilitate decisions on biodiversity conservation and reforestation programs in Central Asia.


Subject(s)
Forests , Image Processing, Computer-Assisted/methods , Satellite Imagery , Asia, Central , Ecology/instrumentation , Ecology/methods , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...