Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 6(7): 3965-3974, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-29218166

ABSTRACT

The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH3), a fertilizer and chemical fuel, from N2 and H2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 µmol NH3 per mol metal per min at 1 bar and above 550 °C via reduction of Mn6N2.58 to Mn4N and hydrogenation of Ca3N2 and Sr2N to Ca2NH and SrH2, respectively.

2.
Biotechnol Adv ; 29(4): 391-401, 2011.
Article in English | MEDLINE | ID: mdl-21419837

ABSTRACT

In the biopharmaceutical industry, mammalian and insect cells as well as plant cell cultures are gaining worldwide importance to produce biopharmaceuticals and as products themselves, for example in stem cell therapy. These highly sophisticated cell-based production processes need to be monitored and controlled to guarantee product quality and to satisfy GMP requirements. With the process analytical technology (PAT) initiative, requirements regarding process monitoring and control have changed and real-time in-line monitoring tools are now recommended. Dielectric spectroscopy (DS) can serve as a tool to satisfy some PAT requirements. DS has been used in the medical field for quite some time and it may allow real-time process monitoring of biological cell culture parameters. DS has the potential to enable process optimization, automation, cost reduction, and a more consistent product quality. Dielectric spectroscopy is reviewed here as a tool to monitor biochemical processes. Commercially available dielectric sensing systems are discussed. The potential of this technology is demonstrated through examples of current and potential future applications in research and industry for mammalian and insect cell culture.


Subject(s)
Biotechnology/methods , Cell Culture Techniques/methods , Dielectric Spectroscopy/methods , Animals , Biomass , Dielectric Spectroscopy/instrumentation
3.
Water Res ; 40(18): 3385-92, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16952387

ABSTRACT

Reverse osmosis (RO) has proven to be an effective method for the concentration of natural organic matter (NOM) from fresh waters, but an undesirable consequence of this process is the co-concentration of some inorganic solutes. Accordingly, current practice yields solutions of NOM that, upon desalting and freeze-drying, are converted into dry solids containing finely dispersed sulfuric acid and silicic acid (H(4)SiO(4)). These acids will contribute to the apparent carboxylic and phenolic contents of NOM, leading to an overestimation of both. NOM may also be chemically altered by sulfuric acid, which reacts strongly with many classes of organic compounds. The sulfur content and ash content of NOM will be elevated in the presence of sulfuric acid and H(4)SiO(4). The goal of this study is to develop and test a method in which the removal of water by RO is coupled with the removal of salts by electrodialysis (ED). Like RO, ED is a relatively mild treatment that enables the desalting of NOM solutions without subjecting those samples to conditions of extremely high or low pH. The end product of the coupled process is a desalted, concentrated liquid sample from which low-ash NOM can be obtained as a freeze-dried solid material. In this study, the efficacy of ED for desalting NOM is evaluated using concentrated synthetic river waters and actual concentrated (by RO) river waters. Under optimal operating conditions, both sulfate and silica can be largely removed from RO-concentrated solutions of riverine NOM with only an average loss of 3% of total organic carbon.


Subject(s)
Fresh Water/chemistry , Organic Chemicals/chemistry , Water Purification , Adsorption , Dialysis/methods , Electrochemistry/methods , Water Purification/methods
4.
J Biotechnol ; 119(2): 147-54, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-15941606

ABSTRACT

The esterification reaction of geraniol with acetic acid catalyzed by immobilized Candida antarctica lipase B was studied in hexane using a pervaporation-assisted batch reactor. The effect of thermodynamic water activity (a(w)) on the initial reaction rate was investigated at a(w) ranging from 0.02 to 1.0. The a(w) was monitored on-line in real time. a(w) was actively controlled throughout the reaction by using highly water-selective membrane pervaporation. This novel combination of a(w) sensing and control eliminates changes in a(w) during the reaction even in the initial phase of relatively rapid water release during an esterification. No chemicals are introduced for a(w) control, and no purge gases or liquids are needed. A maximum in the initial reaction rate was found approximately at a(w)=0.1. The initial reaction rate declined quickly at higher a(w), and dropped precipitously at lower a(w).


Subject(s)
Enzymes, Immobilized/metabolism , Hexanes/pharmacology , Thermodynamics , Water/pharmacology , Bioreactors , Calibration , Candida/enzymology , Catalysis/drug effects , Chromatography, Gas , Esterification , Hexanes/chemistry , Kinetics , Lipase/metabolism , Membranes, Artificial , Time Factors , Water/chemistry
5.
Biotechnol Bioeng ; 75(6): 676-81, 2001 Dec 20.
Article in English | MEDLINE | ID: mdl-11745145

ABSTRACT

The esterification of geraniol with acetic acid in n-hexane was investigated. A commercial lipase preparation from Candida antarctica was used as catalyst. The equilibrium conversion (no water removal) was found to be 94% for the reaction of 0.1 M alcohol and 0.1 M acid in n-hexane at 30 degrees C. This was shown by both hydrolysis and esterification reactions. The activation energy of reaction over the temperature range 10 degrees to 50 degrees C was found to be 16 kJ/mol. The standard heat of reaction was -28 kJ/mol. Membrane pervaporation using a cellulose acetate/ceramic composite membrane was then employed for selective removal of water from the reaction mixture. The membrane was highly effective at removing water while retaining all reaction components. Negligible transport of the solvent n-hexane was observed. Water removal by pervaporation increased the reaction rate by approximately 150% and increased steady-state conversion to 100%.


Subject(s)
Acetates/chemical synthesis , Hexanes/chemistry , Lipase/chemistry , Membranes, Artificial , Terpenes/chemical synthesis , Water , Acyclic Monoterpenes , Catalysis , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...