Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 31(9): e3964, 2018 09.
Article in English | MEDLINE | ID: mdl-29974989

ABSTRACT

One of the major challenges in constructing multi-channel and multi-row transmit (Tx) or transceiver (TxRx) arrays is the decoupling of the array's loop elements. Overlapping of the surface loops allows the decoupling of adjacent elements and also helps to improve the radiofrequency field profile by increasing the penetration depth and eliminating voids between the loops. This also simplifies the design by reducing the number of decoupling circuits. At the same time, overlapping may compromise decoupling by generating high resistive (electric) coupling near the overlap, which cannot be compensated for by common decoupling techniques. Previously, based on analytical modeling, we demonstrated that electric coupling has strong frequency and loading dependence, and, at 9.4 T, both the magnetic and electric coupling between two heavily loaded loops can be compensated at the same time simply by overlapping the loops. As a result, excellent decoupling was obtained between adjacent loops of an eight-loop single-row (1 × 8) human head tight-fit TxRx array. In this work, we designed and constructed a 9.4-T (400-MHz) 16-loop double-row (2 × 8) overlapped TxRx head array based on the results of the analytical and numerical electromagnetic modeling. We demonstrated that, simply by the optimal overlap of array loops, a very good decoupling can be obtained without additional decoupling strategies. The constructed TxRx array provides whole-brain coverage and approximately 1.5 times greater Tx efficiency relative to a transmit-only/receive-only (ToRo) array, which consists of a larger Tx-only array and a nested tight-fit 31-loop receive (Rx)-only array. At the same time, the ToRo array provides greater peripheral signal-to-noise ratio (SNR) and better Rx parallel performance in the head-feet direction. Overall, our work provides a recipe for a simple, robust and very Tx-efficient design suitable for parallel transmission and whole-brain imaging at ultra-high fields.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Computer Simulation , Electromagnetic Phenomena , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
2.
Magn Reson Med ; 80(5): 2122-2138, 2018 11.
Article in English | MEDLINE | ID: mdl-29536567

ABSTRACT

PURPOSE: The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. METHODS: We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. RESULTS: At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. CONCLUSION: The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength.


Subject(s)
Electromagnetic Fields , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Algorithms , Equipment Design , Head , Humans , Signal-To-Noise Ratio
3.
Magn Reson Med ; 79(2): 1200-1211, 2018 02.
Article in English | MEDLINE | ID: mdl-28603846

ABSTRACT

PURPOSE: To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. METHODS: Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. RESULTS: We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. CONCLUSION: As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Female , Humans , Male , Models, Biological , Phantoms, Imaging , Signal-To-Noise Ratio
4.
NMR Biomed ; 30(5)2017 May.
Article in English | MEDLINE | ID: mdl-28186652

ABSTRACT

The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Image Interpretation, Computer-Assisted/methods , Magnetic Fields , Magnetic Resonance Imaging/instrumentation , Models, Neurological , Signal-To-Noise Ratio , Artifacts , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Radiation Dosage , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...