Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 618(7966): 708-711, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37277615

ABSTRACT

Dust grains absorb half of the radiation emitted by stars throughout the history of the universe, re-emitting this energy at infrared wavelengths1-3. Polycyclic aromatic hydrocarbons (PAHs) are large organic molecules that trace millimetre-size dust grains and regulate the cooling of interstellar gas within galaxies4,5. Observations of PAH features in very distant galaxies have been difficult owing to the limited sensitivity and wavelength coverage of previous infrared telescopes6,7. Here we present James Webb Space Telescope observations that detect the 3.3 µm PAH feature in a galaxy observed less than 1.5 billion years after the Big Bang. The high equivalent width of the PAH feature indicates that star formation, rather than black hole accretion, dominates infrared emission throughout the galaxy. The light from PAH molecules, hot dust and large dust grains and stars are spatially distinct from one another, leading to order-of-magnitude variations in PAH equivalent width and ratio of PAH to total infrared luminosity across the galaxy. The spatial variations we observe suggest either a physical offset between PAHs and large dust grains or wide variations in the local ultraviolet radiation field. Our observations demonstrate that differences in emission from PAH molecules and large dust grains are a complex result of localized processes within early galaxies.

2.
Eur Spine J ; 28(8): 1837-1845, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31098715

ABSTRACT

PURPOSE: In preclinical studies, many stem cell/cellular interventions demonstrated robust regeneration and/or repair in case of SCI and were considered a promising therapeutic candidate. However, data from clinical studies are not robust. Despite lack of substantial evidence for the efficacy of these interventions in spinal cord injury (SCI), many clinics around the world offer them as "therapy." These "clinics" claim efficacy through patient testimonials and self-advertisement without any scientific evidence to validate their claims. Thus, SCS established a panel of experts to review published preclinical studies, clinical studies and current global guidelines/regulations on usage of cellular transplants and make recommendations for their clinical use. METHODS: The literature review and draft position statement was compiled and circulated among the panel and relevant suggestions incorporated to reach consensus. This was discussed and finalized in an open forum during the SCS Annual Meeting, ISSICON. RESULTS: Preclinical evidence suggests safety and clinical potency of cellular interventions after SCI. However, evidence from clinical studies consisted of mostly case reports or uncontrolled case series/studies. Data from animal studies cannot be generalized to human SCI with regard to toxicity prediction after auto/allograft transplantation. CONCLUSIONS: Currently, cellular/stem cell transplantation for human SCI is experimental and needs to be tested through a valid clinical trial program. It is not ethical to provide unproven transplantation as therapy with commercial implications. To stop the malpractice of marketing such "unproven therapies" to a vulnerable population, it is crucial that all countries unite to form common, well-defined regulations/legislation on their use in SCI. These slides can be retrieved from Electronic Supplementary Material.


Subject(s)
Spinal Cord Injuries/surgery , Stem Cell Transplantation , Animals , Humans , Practice Guidelines as Topic , Stem Cell Transplantation/legislation & jurisprudence , Stem Cell Transplantation/methods , Stem Cell Transplantation/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...