Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Neurology ; 101(15): e1495-e1508, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37643885

ABSTRACT

BACKGROUND AND OBJECTIVES: RYR1-related myopathies are the most common congenital myopathies, but long-term natural history data are still scarce. We aim to describe the natural history of dominant and recessive RYR1-related myopathies. METHODS: A cross-sectional and longitudinal retrospective data analysis of pediatric cases with RYR1-related myopathies seen between 1992-2019 in 2 large UK centers. Patients were identified, and data were collected from individual medical records. RESULTS: Sixty-nine patients were included in the study, 63 in both cross-sectional and longitudinal studies and 6 in the cross-sectional analysis only. Onset ranged from birth to 7 years. Twenty-nine patients had an autosomal dominant RYR1-related myopathy, 31 recessive, 6 de novo dominant, and 3 uncertain inheritance. Median age at the first and last appointment was 4.0 and 10.8 years, respectively. Fifteen% of patients older than 2 years never walked (5 recessive, 4 de novo dominant, and 1 dominant patient) and 7% lost ambulation during follow-up. Scoliosis and spinal rigidity were present in 30% and 17% of patients, respectively. Respiratory involvement was observed in 22% of patients, and 12% needed ventilatory support from a median age of 7 years. Feeding difficulties were present in 30% of patients, and 57% of those needed gastrostomy or tube feeding. There were no anesthetic-induced malignant hyperthermia episodes reported in this cohort. We observed a higher prevalence of prenatal/neonatal features in recessive patients, in particular hypotonia and respiratory difficulties. Clinical presentation, respiratory outcomes, and feeding outcomes were consistently more severe at presentation and in the recessive group. Conversely, longitudinal analysis suggested a less progressive course for motor and respiratory function in recessive patients. Annual change in forced vital capacity was -0.2%/year in recessive vs -1.4%/year in dominant patients. DISCUSSION: This clinical study provides long-term data on disease progression in RYR1-related myopathies that may inform management and provide essential milestones for future therapeutic interventions.


Subject(s)
Muscular Diseases , Ryanodine Receptor Calcium Release Channel , Infant, Newborn , Child , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Retrospective Studies , Cross-Sectional Studies , Muscular Diseases/epidemiology , Muscular Diseases/genetics , Muscle Hypotonia/pathology , Muscle, Skeletal/pathology , Mutation/genetics
2.
Neuromuscul Disord ; 33(9): 98-105, 2023 09.
Article in English | MEDLINE | ID: mdl-37598009

ABSTRACT

Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme 1 (GBE1) gene and is characterized by accumulation of polyglucosan bodies in liver, muscle and other tissues. We report three cases with neuromuscular forms of GSD IV, none of whom had polyglucosan bodies on muscle biopsy. The first case had no neonatal problems and presented with delayed walking. The other cases presented at birth: one with arthrogryposis, hypotonia, and respiratory distress, the other with talipes and feeding problems. All developed a similar pattern of axial weakness, proximal upper limb weakness and scapular winging, and much milder proximal lower limb weakness. Our cases expand the phenotypic spectrum of neuromuscular GSD IV, highlight that congenital myopathy and limb girdle weakness can be caused by mutations in GBE1, and emphasize that GSD IV should be considered even in the absence of characteristic polyglucosan bodies on muscle biopsy.


Subject(s)
Arthrogryposis , Glycogen Storage Disease Type IV , Infant, Newborn , Humans , Glycogen Storage Disease Type IV/diagnosis , Glycogen Storage Disease Type IV/genetics , Muscle Hypotonia , Glucans
3.
Neuromuscul Disord ; 33(1): 50-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36522252

ABSTRACT

Individuals with biallelic TBCK pathogenic variants present in infancy with distinctive facial features, profound hypotonia, severe intellectual impairment and epilepsy. Although rare, it may mimic other neurogenetic disorders leading to extensive investigations. Improved understanding of the clinical phenotype can support early monitoring of complications due to respiratory insufficiency. We present six individuals who were found to have pathogenic biallelic TBCK variants. The clinico-radiological and diagnostic records were reviewed. Five individuals were diagnosed with hypoventilation, requiring respiratory support, highlighting the need for early respiratory surveillance. Characteristic brain imaging in our cohort included periventricular leukomalacia-like changes. We recommend screening for TBCK in hypotonic children with periventricular leukomalacia-like changes, particularly in the absence of prematurity.


Subject(s)
Leukomalacia, Periventricular , Protein Serine-Threonine Kinases , Humans , Brain , Hypoventilation/diagnosis , Hypoventilation/genetics , Phenotype , Protein Serine-Threonine Kinases/genetics , Child
4.
Nat Commun ; 13(1): 6324, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344503

ABSTRACT

Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk .


Subject(s)
Genome , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Phenotype
5.
J Am Heart Assoc ; 11(23): e026494, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36444867

ABSTRACT

Background Integrin α7ß1 is a major laminin receptor in skeletal and cardiac muscle. In skeletal muscle, integrin α7ß1 plays an important role during muscle development and has been described as an important modifier of skeletal muscle diseases. The integrin α7ß1 is also highly expressed in the heart, but its precise role in cardiac function is unknown. Mutations in the integrin α7 gene (ITGA7) have been reported in children with congenital myopathy. Methods and Results In this study, we described skeletal and cardiac muscle pathology in Itga7-/- mice and 5 patients from 2 unrelated families with ITGA7 mutations. Proband in family 1 presented a homozygous c.806_818del [p.S269fs] variant, and proband in family 2 was identified with 2 intron variants in the ITGA7 gene. The complete absence of the integrin α7 protein in muscle supports the ITGA7 mutations are pathogenic. We performed electrocardiography, echocardiography, or cardiac magnetic resonance imaging, and histological biopsy analyses in patients with ITGA7 deficiency and Itga7-/- mice. The patients exhibited cardiac dysrhythmia and dysfunction from the third decade of life and late-onset respiratory insufficiency, but with relatively mild limb muscle involvement. Mice demonstrated corresponding abnormalities in cardiac conduction and contraction as well as diaphragm muscle fibrosis. Conclusions Our data suggest that loss of integrin α7 causes a novel form of adult-onset cardiac dysfunction indicating a critical role for the integrin α7ß1 in normal cardiac function and highlights the need for long-term cardiac monitoring in patients with ITGA7-related congenital myopathy.


Subject(s)
Heart Diseases , Muscular Diseases , Child , Humans , Adult , Mice , Animals , Family
6.
Ann Clin Transl Neurol ; 9(9): 1465-1474, 2022 09.
Article in English | MEDLINE | ID: mdl-35869884

ABSTRACT

Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy.


Subject(s)
Deafness , Dimethylallyltranstransferase , Hearing Loss , Muscular Dystrophies , Primary Ovarian Insufficiency , Dimethylallyltranstransferase/genetics , Farnesyltranstransferase/genetics , Female , Geranyltranstransferase/genetics , Hearing Loss/genetics , Humans , Muscular Dystrophies/genetics , Mutation, Missense
7.
Pract Neurol ; 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534197

ABSTRACT

The histiocytoses are a group of rare disorders characterised by the accumulation of neoplastic or non-neoplastic activated histiocytes in various tissues. Phenotypes vary widely from cutaneous lesions or lymphadenopathy that regress spontaneously to disseminated disease with poor prognosis. Neurological symptoms can be a presenting feature or appear during the course of disease. We present a challenging diagnostic and management case of Rosai-Dorfman-Destombes disease in a 48-year-old woman with a relapsing, partially steroid-responsive syndrome comprising patchy, non-length-dependent radiculoneuropathy with diffuse pachymeningitis and widespread systemic disease, and recent dramatic response to novel mitogen-activated kinase pathway inhibition. We discuss the clinical characteristics, diagnosis, recent breakthroughs in pathogenesis and emerging treatment options for Rosai-Dorfman disease and for the histiocytoses with neurological sequelae, including Langerhans cell histiocytosis and Erdheim-Chester disease.

8.
Nat Commun ; 13(1): 2306, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484142

ABSTRACT

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin ß2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.


Subject(s)
Amyotrophic Lateral Sclerosis , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Muscular Dystrophy, Oculopharyngeal , Amyotrophic Lateral Sclerosis/genetics , Animals , Frameshift Mutation , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterozygote , Humans , Muscular Dystrophy, Oculopharyngeal/genetics
9.
Neuromuscul Disord ; 32(3): 245-254, 2022 03.
Article in English | MEDLINE | ID: mdl-35249790

ABSTRACT

Biallelic pathogenic variants in the troponin T type 1 (TNNT1) gene cause a severe form of congenital nemaline myopathy. Typical features include severe motor delay, proximal contractures and weakness, pectus carinatum, chest wall rigidity and tremor. If left untreated, respiratory failure leads to early death at a median age of 18 months. Here we report on three non-Amish, unrelated patients harbouring novel TNNT1 variants. The peculiar combination of respiratory muscle weakness and chest wall stiffness caused early severe hypoventilation warranting the use of high pressures on BiPAP ventilator, with subsequent rapid escalation of pressures delivered with limited efficacy secondary to the extreme rib cage stiffness. Severe respiratory impairment occurred despite a relatively milder motor involvement in one patient. Muscle biopsies from two individuals showed predominant involvement of type 1 fibres, abundant nemaline bodies, marked fibrosis and loss of TNNT1 protein. We aim to increase the awareness of the challenges of managing respiratory support in patients with this unique respiratory phenotype.


Subject(s)
Myopathies, Nemaline , Humans , Muscle, Skeletal/pathology , Muscles , Mutation , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Phenotype , Troponin T/genetics , Troponin T/metabolism
10.
Hum Mutat ; 43(4): 487-498, 2022 04.
Article in English | MEDLINE | ID: mdl-35077597

ABSTRACT

A proper interaction between muscle-derived collagen XXV and its motor neuron-derived receptors protein tyrosine phosphatases σ and δ (PTP σ/δ) is indispensable for intramuscular motor innervation. Despite this, thus far, pathogenic recessive variants in the COL25A1 gene had only been detected in a few patients with isolated ocular congenital cranial dysinnervation disorders. Here we describe five patients from three unrelated families with recessive missense and splice site COL25A1 variants presenting with a recognizable phenotype characterized by arthrogryposis multiplex congenita with or without an ocular congenital cranial dysinnervation disorder phenotype. The clinical features of the older patients remained stable over time, without central nervous system involvement. This study extends the phenotypic and genotypic spectrum of COL25A1 related conditions, and further adds to our knowledge of the complex process of intramuscular motor innervation. Our observations indicate a role for collagen XXV in regulating the appropriate innervation not only of extraocular muscles, but also of bulbar, axial, and limb muscles in the human.


Subject(s)
Arthrogryposis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Face , Humans , Muscle, Skeletal , Mutation , Phenotype
11.
Neuropathol Appl Neurobiol ; 48(2): e12771, 2022 02.
Article in English | MEDLINE | ID: mdl-34648194

ABSTRACT

AIMS: TRAPPC11, a subunit of the transport protein particle (TRAPP) complex, is important for complex integrity and anterograde membrane transport from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment. Several individuals with TRAPPC11 mutations have been reported with muscle weakness and other features including brain, liver, skeletal and eye involvement. A detailed analysis of brain and muscle pathology will further our understanding of the presentation and aetiology of TRAPPC11 disease. METHODS: We describe five cases of early-onset TRAPPC11-related muscular dystrophy with a systematic review of muscle pathology in all five individuals, post-mortem brain pathology findings in one and membrane trafficking assays in another. RESULTS: All affected individuals presented in infancy with muscle weakness, motor delay and elevated serum creatine kinase (CK). Additional features included cataracts, liver disease, intellectual disability, cardiomyopathy, movement disorder and structural brain abnormalities. Muscle pathology in all five revealed dystrophic changes, universal hypoglycosylation of alpha-dystroglycan and variably reduced dystrophin-associated complex proteins. Membrane trafficking assays showed defective Golgi trafficking in one individual. Neuropathological examination of one individual revealed cerebellar atrophy, granule cell hypoplasia, Purkinje cell (PC) loss, degeneration and dendrite dystrophy, reduced alpha-dystroglycan (IIH6) expression in PC and dentate neurones and absence of neuronal migration defects. CONCLUSIONS: This report suggests that recessive mutations in TRAPPC11 are linked to muscular dystrophies with hypoglycosylation of alpha-dystroglycan. The structural cerebellar involvement that we document for the first time resembles the neuropathology reported in N-linked congenital disorders of glycosylation (CDG) such as PMM2-CDG, suggesting defects in multiple glycosylation pathways in this condition.


Subject(s)
Brain/metabolism , Dystroglycans/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , Vesicular Transport Proteins/genetics , Child, Preschool , Female , Glycosylation , Humans , Infant , Liver/metabolism , Male , Muscular Dystrophies/metabolism , Mutation , Vesicular Transport Proteins/metabolism
12.
J Neuropathol Exp Neurol ; 80(10): 955-965, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34498054

ABSTRACT

Duchenne muscular dystrophy (DMD) is an incurable disease caused by out-of-frame DMD gene deletions while in frame deletions lead to the milder Becker muscular dystrophy (BMD). In the last decade several antisense oligonucleotides drugs have been developed to induce a partially functional internally deleted dystrophin, similar to that produced in BMD, and expected to ameliorate the disease course. The pattern of dystrophin expression and functionality in dystrophinopathy patients is variable due to multiple factors, such as molecular functionality of the dystrophin and its distribution. To benchmark the success of therapeutic intervention, a clear understanding of dystrophin expression patterns in dystrophinopathy patients is vital. Recently, several groups have used innovative techniques to quantify dystrophin in muscle biopsies of children but not in patients with milder BMD. This study reports on dystrophin expression using both Western blotting and an automated, high-throughput, image analysis platform in DMD, BMD, and intermediate DMD/BMD skeletal muscle biopsies. Our results found a significant correlation between Western blot and immunofluorescent quantification indicating consistency between the different methodologies. However, we identified significant inter- and intradisease heterogeneity of patterns of dystrophin expression in patients irrespective of the amount detected on blot, due to variability in both fluorescence intensity and dystrophin sarcolemmal circumference coverage. Our data highlight the heterogeneity of the pattern of dystrophin expression in BMD, which will assist the assessment of dystrophin restoration therapies.


Subject(s)
Dystrophin/biosynthesis , Molecular Imaging/methods , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Adolescent , Child , Child, Preschool , Dystrophin/analysis , Dystrophin/genetics , Female , Gene Expression , High-Throughput Screening Assays/methods , Humans , Male , Muscular Dystrophy, Duchenne/genetics
13.
Neuromuscul Disord ; 31(4): 359-366, 2021 04.
Article in English | MEDLINE | ID: mdl-33558124

ABSTRACT

Pathogenic variants in TPM2 have been associated with a variable clinical spectrum, including congenital myopathies and distal arthrogryposis, all but one with dominant inheritance. We report the second case of recessively inherited TPM2-related Escobar variant of multiple pterygium syndrome and congenital myopathy in a patient from a consanguineous family. Ultra-structural examination of the biopsy revealed few cores/mini-cores and sparse nemaline rods. We found a novel homozygous intronic sequence variant, c.564-2A>C in TPM2. This variant is predicted to abolish the consensus acceptor splice site for exon 6b of TPM2 gene. Parents of the proband, both healthy adults with no clinical features, were heterozygous for the variant. Here we establish a homozygous intronic variant in TPM2 as the likely cause of Escobar variant of multiple pterygium syndrome and congenital myopathy, with sparse nemaline rods.


Subject(s)
Abnormalities, Multiple/genetics , Malignant Hyperthermia/genetics , Myotonia Congenita/genetics , Skin Abnormalities/genetics , Tropomyosin/genetics , Arthrogryposis/genetics , Child, Preschool , Consanguinity , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Male , Mutation , Phenotype , RNA Splice Sites
14.
Acta Neuropathol ; 141(3): 431-453, 2021 03.
Article in English | MEDLINE | ID: mdl-33449170

ABSTRACT

Mutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants. We identified 30 patients with a primary TTN-related congenital myopathy (CM) and two truncating variants, or one truncating and one missense TTN variant, or homozygous for one TTN missense variant. We found that TTN-related myopathies show considerable overlap with other myopathies but are strongly suggested by a combination of certain clinico-pathological features. Presentation was typically at birth with the clinical course characterized by variable progression of weakness, contractures, scoliosis and respiratory symptoms but sparing of extraocular muscles. Cardiac involvement depended on the variant position. Our biophysical analyses demonstrated that missense mutations associated with CMs are strongly destabilizing and exert their effect when expressed on a truncating background or in homozygosity. We hypothesise that destabilizing TTN missense mutations phenocopy truncating variants and are a key pathogenic feature of recessive titinopathies that might be amenable to therapeutic intervention.


Subject(s)
Connectin/genetics , Myotonia Congenita/diagnosis , Myotonia Congenita/genetics , Myotonia Congenita/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Mutation, Missense , Young Adult
15.
Acta Neuropathol Commun ; 9(1): 7, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407808

ABSTRACT

During the last decade, multiple clinical trials for Duchenne muscular dystrophy (DMD) have focused on the induction of dystrophin expression using different strategies. Many of these trials have reported a clear increase in dystrophin protein following treatment. However, the low levels of the induced dystrophin protein have raised questions on its functionality. In our present study, using an unbiased, high-throughput digital image analysis platform, we assessed markers of regeneration and levels of dystrophin associated protein via immunofluorescent analysis of whole muscle sections in 25 DMD boys who received 48-weeks treatment with exon 53 skipping morpholino antisense oligonucleotide (PMO) golodirsen. We demonstrate that the de novo dystrophin induced by exon skipping with PMO golodirsen is capable of conferring a histological benefit in treated patients with an increase in dystrophin associated proteins at the dystrophin positive regions of the sarcolemma in post-treatment biopsies. Although 48 weeks treatment with golodirsen did not result in a significant change in the levels of fetal/developmental myosins for the entire cohort, there was a significant negative correlation between the amount of dystrophin and levels of regeneration observed in different biopsy samples. Our results provide, for the first time, evidence of functionality of induced dystrophin following successful therapeutic intervention in the human.


Subject(s)
Dystrophin/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides/therapeutic use , Regeneration , Biopsy , Child , Dystroglycans/metabolism , Dystrophin/genetics , Humans , Laminin/metabolism , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Myosins/metabolism , Sarcoglycans/metabolism , Sarcolemma/metabolism , Sarcolemma/pathology , Treatment Outcome
16.
Neuromuscul Disord ; 31(3): 212-217, 2021 03.
Article in English | MEDLINE | ID: mdl-33454187

ABSTRACT

Mucolipidosis type IV is a rare autosomal recessive lysosomal storage disorder caused by bi-allelic pathogenic variants in the gene MCOLN1. This encodes for mucolipin-1 (ML1), an endo-lysosomal transmembrane Ca++ channel involved in vesicular trafficking. Although experimental models suggest that defects in mucolipin-1 can cause muscular dystrophy, putatively due to defective lysosomal-mediated sarcolemma repair, the role of mucolipin-1 in human muscle is still poorly deciphered. Elevation of creatine kinase (CK) had been reported in a few cases in the past but comprehensive descriptions of muscle pathology are lacking. Here we report a 7-year-old boy who underwent muscle biopsy due to persistently elevated CK levels (780-15,000 UI/L). Muscle pathology revealed features of a lysosomal storage myopathy with mild regenerative changes. Next generation sequencing confirmed homozygous nonsense variants in MCOLN1. This is a comprehensive pathological description of ML1-related myopathy, supporting the role of mucolipin-1 in muscle homoeostasis.


Subject(s)
Creatine Kinase/metabolism , Mucolipidoses/diagnosis , Biopsy , Child , Humans , Lysosomes , Male , Sarcolemma , Transient Receptor Potential Channels
17.
Neuropediatrics ; 52(5): 390-393, 2021 10.
Article in English | MEDLINE | ID: mdl-33352606

ABSTRACT

Pur-α protein (PURA) syndrome manifests in early childhood with core features such as neurodevelopmental and speech delay, feeding difficulties, epilepsy, and hypotonia at birth. We identified three cases with PURA syndrome in a cohort of patients with unexplained muscular weakness, presenting with a predominantly neuromuscular and ataxic phenotype. We further characterize the clinical presentation of PURA syndrome including myopathic facies and muscular weakness as the main clinical symptoms in combination with elevated serum creatine kinase levels. Furthermore, we report two novel variants located in the conservative domains PUR-I and PUR-II. For the first time, we present the muscle biopsies of PURA syndrome patients, showing myopathic changes, fiber size variability, and fast fiber atrophy as the key features. PURA syndrome should be taken into consideration as a differential diagnosis in pediatric patients with unexplained muscle weakness.


Subject(s)
Epilepsy , Intellectual Disability , Neuromuscular Diseases , Child , Child, Preschool , DNA-Binding Proteins/genetics , Epilepsy/genetics , Humans , Intellectual Disability/genetics , Neuromuscular Diseases/complications , Neuromuscular Diseases/diagnosis , Transcription Factors/genetics
18.
JCSM Rapid Commun ; 4(2): 245-259, 2021.
Article in English | MEDLINE | ID: mdl-35174322

ABSTRACT

BACKGROUND: Periodic paralysis (PP) is a rare genetic disorder in which ion channel mutation causes episodic paralysis in association with hyper- or hypokalaemia. An unexplained but consistent feature of PP is that a phenotype transition occurs around the age of 40, in which the severity of potassium-induced muscle weakness declines but onset of fixed, progressive weakness is reported. This phenotype transition coincides with the age at which muscle mass and optimal motor function start to decline in healthy individuals. We sought to determine if the phenotype transition in PP is linked to the normal ageing phenotype transition and to explore the mechanisms involved. METHODS: A mouse model of hyperkalaemic PP was compared with wild-type littermates across a range of ages (13-104 weeks). Only male mice were used as penetrance is incomplete in females. We adapted the muscle velocity recovery cycle technique from humans to examine murine muscle excitability in vivo. We then examined changes in potassium-induced weakness or caffeine contracture force with age using ex vivo muscle tension testing. Muscles were further characterized by either Western blot, histology or energy charge measurement. For normally distributed data, a student's t-test (± Welch correction) or one- or two-way analysis of variance (ANOVA) was performed to determine significance. For data that were not normally distributed, Welch rank test, Mann Whitney U test or Kruskal-Wallis ANOVA was performed. When an ANOVA was significant (P < 0.05), post hoc Tukey testing was used. RESULTS: Both WT (P = 0.009) and PP (P = 0.007) muscles exhibit increased resistance to potassium-induced weakness with age. Our data suggest that healthy-old muscle develops mechanisms to maintain force despite sarcolemmal depolarization and sodium channel inactivation. In contrast, reduced caffeine contracture force (P = 0.00005), skeletal muscle energy charge (P = 0.004) and structural core pathology (P = 0.005) were specific to Draggen muscle, indicating that they are caused, or at least accelerated by, chronic genetic ion channel dysfunction. CONCLUSIONS: The phenotype transition with age is replicated in a mouse model of PP. Intrinsic muscle ageing protects against potassium-induced weakness in HyperPP mice. However, it also appears to accelerate impairment of sarcoplasmic reticulum calcium release, mitochondrial impairment and the development of core-like regions, suggesting acquired RyR1 dysfunction as the potential aetiology. This work provides a first description of mechanisms involved in phenotype transition with age in PP. It also demonstrates how studying phenotype transition with age in monogenic disease can yield novel insights into both disease physiology and the ageing process itself.

19.
Ann Clin Transl Neurol ; 7(10): 1870-1882, 2020 10.
Article in English | MEDLINE | ID: mdl-32910545

ABSTRACT

OBJECTIVE: To characterize natural history of Laminin-α2 related muscular dystrophies (LAMA2-RD) to help anticipating complications and identifying reliable outcome measures for clinical trial design and powering. METHODS: We conducted a retrospective, single-center, cross-sectional and longitudinal study on 46 LAMA2-RD pediatric patients (37 families). Patients were seen at the Dubowitz Neuromuscular Centre, London between 1985 and 2019. Data were collected by case note reviews. Time-to-event analysis was performed to estimate median age at complications occurrence. RESULTS: Forty two patients had complete deficiency of Laminin-α2 (CD) and four had partial deficiency (PD). Median age at first and last assessment was 2 years and 12.1 years, respectively. Median follow-up length was 7.8 years (range 0-18 years). Seven CD patients died at median age 12 years. One CD and two PD subjects achieved independent ambulation. We observed a linear increase in elbow flexor contractures in CD subjects. Thirty-two CD and one PD patient developed scoliosis, nine underwent spinal surgery. Twenty-two CD required nocturnal noninvasive ventilation (median age 11.7 years). CD subjects showed a 2.9% linear annual decline in forced vital capacity % predicted. Nineteen CD and one PD patient required gastrostomy insertion for failure to thrive and/or unsafe swallow (median age 10.9 years). Four CD patients had partial seizures. Mild left cardiac ventricular dysfunction and rhythm disturbances were identified in seven CD patients. INTERPRETATION: This retrospective longitudinal study provides long-term natural history of LAMA2-RD. This will help management and identification of key milestones of disease progression that could be considered for future therapeutic intervention.


Subject(s)
Laminin/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophies/metabolism , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Laminin/deficiency , Male , Muscle, Skeletal/metabolism , Muscular Dystrophies/complications , Muscular Dystrophies/physiopathology , Retrospective Studies , Seizures/physiopathology , Young Adult
20.
Mol Ther Methods Clin Dev ; 18: 558-570, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32775491

ABSTRACT

Pompe disease is a lysosomal storage disorder caused by malfunctions of the acid alpha-glucosidase (GAA) enzyme with a consequent toxic accumulation of glycogen in cells. Muscle wasting and hypertrophic cardiomyopathy are the most common clinical signs that can lead to cardiac and respiratory failure within the first year of age in the more severe infantile forms. Currently available treatments have significant limitations and are not curative, highlighting a need for the development of alternative therapies. In this study, we investigated the use of a clinically relevant lentiviral vector to deliver systemically GAA through genetic modification of hematopoietic stem and progenitor cells (HSPCs). The overexpression of GAA in human HSPCs did not exert any toxic effect on this cell population, which conserved its stem cell capacity in xenograft experiments. In a murine model of Pompe disease treated at young age, we observed phenotypic correction of heart and muscle function with a significant reduction of glycogen accumulation in tissues after 6 months of treatment. These findings suggest that lentiviral-mediated HSPC gene therapy can be a safe alternative therapy for Pompe disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...