Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(25): 21141-21147, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867507

ABSTRACT

During storms in the southwestern United States, several rattlesnake species have been observed drinking rain droplets collected on their dorsal scales. This process often includes coiling and flattening of the snake's body, presumably to enhance water collection. Here, we explored this rain-harvesting behavior of the Western Diamond-backed Rattlesnake (Crotalus atrox) from the perspective of surface science. Specifically, we compared surface wettability and texture, as well as droplet impact and evaporation dynamics on the rattlesnake epidermis with those of two unrelated (control) sympatric snake species (Desert Kingsnake, Lampropeltis splendida, and Sonoran Gopher Snake, Pituophis catenifer). These two control species are not known to show rain-harvesting behavior. Our results show that the dorsal scales of the rattlesnake aid in water collection by providing a highly sticky, hydrophobic surface, which pins the impacting water droplets. We show that this high pinning characteristic stems from surface nanotexture made of shallow, labyrinth-like channels.

2.
Soft Matter ; 14(28): 5869-5877, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29951675

ABSTRACT

In this work, we perform a combined experimental and numerical analysis of elastomer swelling dynamics upon impingement of a train of solvent droplets. We use time scale analysis to identify spatiotemporal regimes resulting in distinct boundary conditions that occur based on relative values of the absorption timescale and the droplet train period. We recognize that when either timescale is significantly larger than the other, two cases of quasi-uniform swelling occur. In contrast, when the two timescales are comparable, a variety of temporary geometrical features due to localized swelling are observed. We show that the swelling feature and its temporal evolution depends upon geometric scaling of polymer thickness and width relative to the droplet size. Based on this scaling, we identify six cases of localized swelling and experimentally demonstrate the swelling features for two cases representing limits of thickness and width. A finite element model of local swelling is developed and validated with experimental results for these two cases. The model is subsequently used to explore the swelling behavior in the rest of the identified cases. We show that depending upon the lateral dimension of the sample, swelling can locally exhibit mushroom, mesa, and cap like shapes. These deformations are magnified during the droplet-train impact but dissipate during post-train polymer equilibration. Our results also show that while swelling shape is a function of lateral dimensions of the sample, the extent of swelling increases with the elastomer sample thickness.

3.
Langmuir ; 33(43): 12095-12101, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28956930

ABSTRACT

Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.

4.
J Therm Biol ; 61: 16-28, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27712656

ABSTRACT

The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60nm nanoshells with concentration of 5×1015mm-3 result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model.


Subject(s)
Contrast Media/chemistry , Gold/chemistry , Nanoshells/chemistry , Thermal Conductivity , Algorithms , Computer Simulation , Contrast Media/therapeutic use , Gold/therapeutic use , Hot Temperature , Humans , Hyperthermia, Induced/methods , Laser Therapy/methods , Lasers , Models, Biological , Nanoshells/therapeutic use , Neoplasms/therapy , Phototherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...