Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 8(12): 3653-3660, 2016 12 01.
Article in English | MEDLINE | ID: mdl-28173114

ABSTRACT

Western honey bees (Apis mellifera) far exceed the commonly observed 1­2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species.


Subject(s)
Bees/genetics , Chromosome Inversion , Evolution, Molecular , Recombination, Genetic , Translocation, Genetic , Animals , Chromosome Mapping , Female , Genetic Linkage , Genome, Insect , Male , Mutation Rate
2.
Naturwissenschaften ; 98(9): 795-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21732186

ABSTRACT

During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.


Subject(s)
Bees/anatomy & histology , Bees/physiology , Biological Evolution , Animals , Bees/classification , Female , Ovary/anatomy & histology , Sexual Behavior, Animal , Species Specificity
3.
Naturwissenschaften ; 96(6): 719-23, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19259641

ABSTRACT

Beeswaxes of honeybee species share some homologous neutral lipids; but species-specific differences remain. We analysed behavioural variation for wax choice in honeybees, calculated the Euclidean distances for different beeswaxes and assessed the relationship of Euclidean distances to wax choice. We tested the beeswaxes of Apis mellifera capensis, Apis florea, Apis cerana and Apis dorsata and the plant and mineral waxes Japan, candelilla, bayberry and ozokerite as sheets placed in colonies of A. m. capensis, A. florea and A. cerana. A. m. capensis accepted the four beeswaxes but removed Japan and bayberry wax and ignored candelilla and ozokerite. A. cerana colonies accepted the wax of A. cerana, A. florea and A. dorsata but rejected or ignored that of A. m. capensis, the plant and mineral waxes. A. florea colonies accepted A. cerana, A. dorsata and A. florea wax but rejected that of A. m. capensis. The Euclidean distances for the beeswaxes are consistent with currently prevailing phylogenies for Apis. Despite post-speciation chemical differences in the beeswaxes, they remain largely acceptable interspecifically while the plant and mineral waxes are not chemically close enough to beeswax for their acceptance.


Subject(s)
Bees/physiology , Waxes/metabolism , Animals , Bees/growth & development , Cluster Analysis , Diet , Honey , Housing, Animal , Nesting Behavior/physiology , Plants , Reproduction/physiology , Species Specificity , Waxes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...