Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Infect Dis ; 23(5): 568-577, 2023 05.
Article in English | MEDLINE | ID: mdl-36462526

ABSTRACT

BACKGROUND: Malaria outbreaks are important public health concerns that can cause resurgence in endemic regions approaching elimination. We investigated a Plasmodium falciparum outbreak in Attapeu Province, Laos, during the 2020-21 malaria season, using genomic epidemiology methods to elucidate parasite population dynamics and identify its causes. METHODS: In this genetic analysis, 2164 P falciparum dried blood spot samples were collected from southern Laos between Jan 1, 2017, and April 1, 2021, which included 249 collected during the Attapeu outbreak between April 1, 2020, and April 1, 2021, by routine surveillance. Genetic barcodes obtained from these samples were used to investigate epidemiological changes underpinning the outbreak, estimate population diversity, and analyse population structure. Whole-genome sequencing data from additional historical samples were used to reconstruct the ancestry of outbreak strains using identity-by-descent analyses. FINDINGS: The outbreak parasite populations were characterised by unprecedented loss of genetic diversity, primarily caused by rapid clonal expansion of a multidrug-resistant strain (LAA1) carrying the kelch13 Arg539Thr (R539T) mutation. LAA1 replaced kelch13 Cys580Tyr (C580Y) mutants resistant to dihydroartemisinin-piperaquine (KEL1/PLA1) as the dominant strain. LAA1 inherited 58·8% of its genome from a strain circulating in Cambodia in 2008. A secondary outbreak strain (LAA2) carried the kelch13 C580Y allele, and a genome that is essentially identical to a Cambodian parasite from 2009. A third, low-frequency strain (LAA7) was a recombinant of KEL1/PLA1 with a kelch13 R539T mutant. INTERPRETATION: These results strongly suggest that the outbreak was driven by a selective sweep, possibly associated with multidrug-resistant phenotypes of the outbreak strains. Established resistant populations can circulate at low frequencies for years before suddenly overwhelming dominant strains when the conditions for selection become favourable-eg, when front-line therapies change. Genetic surveillance can support elimination by characterising key properties of outbreaks such as population diversity, drug resistance marker prevalence, and the origins of outbreak strains. FUNDING: Bill & Melinda Gates Foundation; The Global Fund to Fight AIDS, Tuberculosis and Malaria; Wellcome Trust. TRANSLATION: For the Lao translation of the abstract see Supplementary Materials section.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Plasmodium falciparum/genetics , Laos/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Molecular Epidemiology , Drug Resistance/genetics , Malaria/epidemiology , Disease Outbreaks , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
2.
Elife ; 102021 08 10.
Article in English | MEDLINE | ID: mdl-34372970

ABSTRACT

Background: National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures. Methods: Samples from symptomatic patients are processed by SpotMalaria, a high-throughput system that produces a comprehensive set of genotypes comprising several drug resistance markers, species markers and a genomic barcode. GenRe-Mekong delivers Genetic Report Cards, a compendium of genotypes and phenotype predictions used to map prevalence of resistance to multiple drugs. Results: GenRe-Mekong has worked with NMCPs and research projects in eight countries, processing 9623 samples from clinical cases. Monitoring resistance markers has been valuable for tracking the rapid spread of parasites resistant to the dihydroartemisinin-piperaquine combination therapy. In Vietnam and Laos, GenRe-Mekong data have provided novel knowledge about the spread of these resistant strains into previously unaffected provinces, informing decision-making by NMCPs. Conclusions: GenRe-Mekong provides detailed knowledge about drug resistance at a local level, and facilitates data sharing at a regional level, enabling cross-border resistance monitoring and providing the public health community with valuable insights. The project provides a rich open data resource to benefit the entire malaria community. Funding: The GenRe-Mekong project is funded by the Bill and Melinda Gates Foundation (OPP11188166, OPP1204268). Genotyping and sequencing were funded by the Wellcome Trust (098051, 206194, 203141, 090770, 204911, 106698/B/14/Z) and Medical Research Council (G0600718). A proportion of samples were collected with the support of the UK Department for International Development (201900, M006212), and Intramural Research Program of the National Institute of Allergy and Infectious Diseases.


Subject(s)
Communicable Disease Control/statistics & numerical data , Disease Eradication/statistics & numerical data , Drug Resistance/genetics , Malaria/prevention & control , Plasmodium/genetics , Animals , Asia, Southeastern , Bangladesh , Democratic Republic of the Congo , India , Plasmodium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...