Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 24(31): 5746-5750, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35905441

ABSTRACT

Herein we report the use of indoles, one of the most common nitrogen-containing heterocycles in FDA-approved drugs, as nucleophiles in the Pd-catalyzed aza-Wacker reaction. This N-functionalization of indoles is a Markovnikov selective olefin functionalization of simple alkenes using catalytic Pd(NPhth)2(PhCN)2 and O2 as the terminal oxidant in the presence of catalytic Bu4NBr. Various substituted indoles and alkenes are found to participate; 21 examples are presented with yields ranging from 41 to 97% isolated yield. Additionally, lactams and oxazolidinones are shown to participate under the reaction conditions. Mechanistic investigations suggest that the phthalimide ligand and Bu4NBr additive slow undesired side reactions: indole decomposition and olefin isomerization, respectively.


Subject(s)
Alkenes , Palladium , Amination , Catalysis , Indoles , Molecular Structure , Oxidative Stress
2.
Hum Mutat ; 29(9): 1100-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18752307

ABSTRACT

The dystrophinopathies, which include Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy, are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene (DMD). Approximately 70% of mutations causing DMD/BMD are deletions or duplications and the remainder are point mutations. Current clinical diagnostic strategies have limits of resolution that make detection of small DMD deletions and duplications difficult to identify. We developed an oligonucleotide-based array comparative genomic hybridization (array-CGH) platform for the enhanced identification of deletions and duplications in the DMD gene. Using this platform, 39 previously characterized patient samples were analyzed, resulting in the accurate identification of 38 out of 39 rearrangements. Array-CGH did not identify a 191-bp deletion partially involving exon 19 that created a junction fragment detectable by Southern hybridization. To further evaluate the sensitivity and specificity of this array, we performed concurrent blinded analyses by conventional methodologies and array-CGH of 302 samples submitted to our clinical laboratory for DMD deletion/duplication testing. Results obtained on the array-CGH platform were concordant with conventional methodologies in 300 cases, including 69 with clinically-significant rearrangements. In addition, the oligonucleotide array-CGH platform detected two duplications that conventional methods failed to identify. Five copy-number variations (CNVs) were identified; small size and location within introns predict the benign nature of these CNVs with negligible effect on gene function. These results demonstrate the utility of this array-CGH platform in detecting submicroscopic copy-number changes involving the DMD gene, as well as providing more precise breakpoint identification at high-resolution and with improved sensitivity.


Subject(s)
DNA Mutational Analysis/standards , Dystrophin/genetics , Gene Rearrangement , Muscular Dystrophy, Duchenne/diagnosis , Oligonucleotide Array Sequence Analysis/methods , Base Sequence , DNA Mutational Analysis/methods , Exons , Female , Gene Dosage , Gene Duplication , Humans , Introns , Male , Methods , Sensitivity and Specificity , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...