Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37291444

ABSTRACT

INTRODUCTION: The pro-inflammatory cytokine interferon-gamma (IFN-γ) is reported to be an agent that boosts the immune modulation of mesenchymal stem cells (MSCs). However, the effects of IFN-γ on the chondrogenic potential of treated MSCs have not been evaluated in depth. This study aimed to evaluate the effects of IFN-γ on the immune modulation and chondrogenic potential of human umbilical cord-derived MSCs (hUC-MSCs). METHODS: UC-MSCs were isolated and expanded following published protocols. They were characterized as MSCs before their use in further experiments. The UC-MSCs were treated with IFN-γ at 10 ng/mL for 48 h. Changes in phenotype were investigated based on changes in MSC markers, immunomodulatory genes (TGF-ß, IL-4, and IDO) for immune modulation, and cartilage-related genes during the induction of differentiation (Col1a2, Col2a1, Sox9, Runx2, and Acan) for chondrogenic potential. RESULTS: IFN-γ-treated UC-MSCs maintained MSC markers and exhibited decreased expression of transcriptional regulatory factors in chondrogenesis (Sox9 and Runx2) and the extracellular matrix-specific genes Col1a2 and Acan but not Col2a1 compared to non-treated cells (p < 0.05). Furthermore, the immunomodulatory capability of IFN-γ-treated UC-MSCs was clearly revealed through their increased expression of IDO and IL-4 and decreased expression of TGF-ß compared to non-treated cells (p < 0.05). CONCLUSION: This study demonstrated that UC-MSCs treated with IFN-γ at 10 ng/mL had reduced expression of chondrocyte-specific genes; however, they maintained multi-lineage differentiation and exhibited immunomodulatory properties.

2.
Adv Exp Med Biol ; 1292: 145-155, 2020.
Article in English | MEDLINE | ID: mdl-32430853

ABSTRACT

INTRODUCTION: The breast cancer cells with CD44+CD24- phenotype are known to play an important role in tumorigenesis, drug resistance, and cancer recurrence. Breast cancer cells with CD44+CD24- phenotype are cultured in three-dimensional (3D) stereotype showing the recapitulation of tumors in vivo such as cell differentiation, heterogeneity, and microenvironment. Using this 3D model in anti-cancer compound research results in a more accurate reflection than conventional monolayer cell culture. This study aimed to identify the antitumor activity of Hopea odorata methanol extract (HO-MeOH-E) on breast cancer cells and cancer stem-like cells in both models of three-dimensional culture (3D) and monolayer cell culture (2D). METHODS: HO-MeOH-E was produced from Hopea odorata plant. The VN9 breast cancer cells (VN9) were collected and expanded from the previous study. The breast cancer stem-like cells (VN9CSC) were sorted from the VN9 based on phenotype CD44+CD24-. Both VN9 and VN9CSC were used to culture in monolayer culture (2D) and organoids (3D) before they were used to treat with HO-MeOH-E. Two other anticancer drugs, doxorubicin and tirapazamine, were used as references. The antitumor activities of extracts and drugs were determined via two assays: antiproliferation using the Alamar blue assay and cell cycle assay. RESULTS: The results showed that HO-MeOH-E was sensitive to both VN9 and VN9CSC in 3D more than 2D culture (IC50 on 3D organoids 144.8 ± 2.172 µg/mL and on 2D 340.2 ± 17.01 µg/mL for VN9CSC (p < 0.001); IC50 on 3D organoids 2055 ± 82.2 µg/mL and on 2D 430.6 ± 8.612 µg/mL for VN9 (p < 0.0001), respectively). HO-MeOH-E inhibits VN9CSC proliferation by blocking S phase and increasing the populations of apoptotic cells; this is consensus to the effect of tirapazamine (TPZ) which is used in hypoxia-activated chemotherapy. CONCLUSION: Taken these results, HO-MeOH-E has the potential effect in hypoxia-activated chemotherapy specifically on breast cancer stem-like cells with CD44+CD24- phenotype.


Subject(s)
Breast Neoplasms/pathology , Cell Culture Techniques , Cell Death/drug effects , Dipterocarpaceae/chemistry , Neoplastic Stem Cells/drug effects , Plant Extracts/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Humans , Neoplastic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...