Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Digit Imaging ; 36(1): 365-372, 2023 02.
Article in English | MEDLINE | ID: mdl-36171520

ABSTRACT

We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusive categories, including "typical," "indeterminate," and "atypical appearance" for COVID-19, or "negative for pneumonia," adapted from previously published guidelines, and bounding boxes were placed on airspace opacities. This dataset and respective annotations are available to researchers for academic and noncommercial use.


Subject(s)
COVID-19 , Humans , Artificial Intelligence , Radiography , Machine Learning , Radiologists , Radiography, Thoracic/methods
2.
Vaccines (Basel) ; 10(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35891208

ABSTRACT

Purpose: We describe a diagnostic procedure suitable for scheduling (re-)vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) according to individual state of humoral immunization. Methods: To clarify the relation between quantitative antibody measurements and humoral ex vivo immune responsiveness, we monitored 124 individuals before, during and six months after vaccination with Spikevax (Moderna, Cambridge, MA, USA). Antibodies against SARS-CoV-2 spike (S1) protein receptor-binding domain (S1-AB) and against nucleocapsid antigens were measured by chemiluminescent immunoassay (Roche). Virus-neutralizing activities were determined by surrogate assays (NeutraLISA, Euroimmune; cPass, GenScript). Neutralization of SARS-CoV-2 in cell culture (full virus NT) served as an ex vivo correlate for humoral immune responsiveness. Results: Vaccination responses varied considerably. Six months after the second vaccination, participants still positive for the full virus NT were safely determined by S1-AB levels ≥1000 U/mL. The full virus NT-positive fraction of participants with S1-AB levels <1000 U/mL was identified by virus-neutralizing activities >70% as determined by surrogate assays (NeutraLISA or cPas). Participants that were full virus NT-negative and presumably insufficiently protected could thus be identified by a sensitivity of >83% and a specificity of >95%. Conclusion: The described diagnostic strategy possibly supports individualized (re-)vaccination schedules based on simple and rapid measurement of serum-based SARS-CoV-2 antibody levels. Our data apply only to WUHAN-type SARS-CoV-2 virus and the current version of the mRNA vaccine from Moderna (Cambridge, MA, USA). Adaptation to other vaccines and more recent SARS-CoV-2 strains will require modification of cut-offs and re-evaluation of sensitivity/specificity.

3.
J Biomed Mater Res A ; 100(10): 2732-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22623404

ABSTRACT

More than 400,000 primary hip and knee replacement surgeries are performed each year in the United States. From these procedures, approximately 0.5-3% will become infected and when considering revision surgeries, this rate has been found to increase significantly. Antibiotic-resistant bacterial infections are a growing problem in patient care. This in vitro research investigated the antimicrobial potential of the polymer released, broad spectrum, Cationic Steroidal Antimicrobial-13 (CSA-13) for challenges against 5 × 10(8) colony forming units (CFU) of methicillin-resistant Staphylococcus aureus (MRSA). It was hypothesized that a weight-to-weight (w/w) concentration of 18% CSA-13 in silicone would exhibit potent bactericidal potential when used as a controlled release device coating. When incorporated into a polymeric device coating, the 18% (w/w) broad-spectrum polymer released CSA-13 antimicrobial eliminated 5 × 10(8) CFU of MRSA within 8 h. In the future, these results will be utilized to develop a sheep model to assess CSA-13 for the prevention of perioperative device-related infections in vivo.


Subject(s)
Anti-Infective Agents/therapeutic use , Coated Materials, Biocompatible/pharmacology , Drug Resistance, Bacterial/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Polymers/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Porosity , Staphylococcal Infections/microbiology , Steroids/pharmacology , Steroids/therapeutic use , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...