Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 100(5): 744-755, 2024.
Article in English | MEDLINE | ID: mdl-38466699

ABSTRACT

PURPOSES: Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. MATERIALS AND METHODS: Leucocyte subpopulation counts from tumor-free mice were obtained 12 hours after 4 fractions of 2.5 Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2 Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. RESULTS: Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+-cells > T-CD4+-cells > B-cells > NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. CONCLUSIONS: Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.


Subject(s)
Brain , Leukocytes , Animals , Mice , Brain/radiation effects , Leukocytes/radiation effects , Lymphopenia/etiology , Dose-Response Relationship, Radiation , Male , X-Rays , Proton Therapy/adverse effects , Mice, Inbred C57BL
2.
IDCases ; 34: e01904, 2023.
Article in English | MEDLINE | ID: mdl-37822875

ABSTRACT

Neonatal hepatic abscess (NHA) is a fatal condition in neonates. NHA can be caused by many organisms including bacteria, parasites, and fungi. Fungal NHA is a rare but troublesome cause in terms of diagnosis and treatment. We present three cases of fungal NHA caused by Candida. In these three cases, different underlying problems associated with NHA had been found.

3.
J Exp Clin Cancer Res ; 42(1): 50, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36814272

ABSTRACT

Leucocyte subpopulations in both lymphoid and myeloid lineages have a significant impact on antitumor immune response. While radiation-induced lymphopenia is being studied extensively, radiation effects on lymphoid and myeloid subtypes have been relatively less addressed. Interactions between leucocyte subpopulations, their specific radiation sensitivity and the specific kinetics of each subpopulation can be modeled based on both experimental data and knowledge of physiological leucocyte depletion, production, proliferation, maturation and homeostasis. Modeling approaches of the leucocyte kinetics that may be used to unravel mechanisms underlying radiation induced-leucopenia and prediction of changes in cell counts and compositions after irradiation are presented in this review. The approaches described open up new possibilities for determining the influence of irradiation parameters both on a single-time point of acute effects and the subsequent recovery of leukocyte subpopulations. Utilization of these approaches to model kinetic data in post-radiotherapy states may be a useful tool for further development of new treatment strategies or for the combination of radiotherapy and immunotherapy.


Subject(s)
Leukocytes , Lymphopenia , Humans , Kinetics , Leukocytes/physiology , Lymphopenia/therapy
4.
Plant Cell ; 25(7): 2679-98, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23903316

ABSTRACT

Plants constantly monitor informational light signals using sensory photoreceptors, which include the phytochrome (phy) family (phyA to phyE), and adjust their growth and development accordingly. Following light-induced nuclear translocation, photoactivated phy molecules bind to and induce rapid phosphorylation and degradation of phy-interacting basic Helix Loop Helix (bHLH) transcription factors (PIFs), such as PIF3, thereby regulating the expression of target genes. However, the mechanisms underlying the signal-relay process are still not fully understood. Here, using mass spectrometry, we identify multiple, in vivo, light-induced Ser/Thr phosphorylation sites in PIF3. Using transgenic expression of site-directed mutants of PIF3, we provide evidence that a set of these phosphorylation events acts collectively to trigger rapid degradation of the PIF3 protein in response to initial exposure of dark-grown seedlings to light. In addition, we show that phyB-induced PIF3 phosphorylation is also required for the known negative feedback modulation of phyB levels in prolonged light, potentially through codegradation of phyB and PIF3. This mutually regulatory intermolecular transaction thus provides a mechanism with the dual capacity to promote early, graded, or threshold regulation of the primary, PIF3-controlled transcriptional network in response to initial light exposure, and later, to attenuate global sensitivity to the light signal through reductions in photoreceptor levels upon prolonged exposure.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Light , Phytochrome B/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Binding Sites/genetics , Feedback, Physiological/radiation effects , Immunoblotting , Molecular Sequence Data , Mutation , Phosphorylation/radiation effects , Phytochrome B/genetics , Plants, Genetically Modified , Proteolysis/radiation effects , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/genetics , Seedlings/metabolism , Serine/genetics , Serine/metabolism , Tandem Mass Spectrometry , Threonine/genetics , Threonine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...