Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Laryngoscope ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031686

ABSTRACT

OBJECTIVE: The purpose of the study is to compare the incidence of early postoperative tracheotomy stoma wound complications in pediatric patients using a silver-impregnated barrier dressing (Mepilex Ag) versus a standard absorbent foam dressing (standard Mepilex). METHODS: This is a prospective, non-blinded, randomized trial of pediatric patients undergoing tracheotomy at a tertiary care children's hospital. Patients were randomized to receive Mepilex Ag versus standard Mepilex tracheostoma dressings following tracheotomy. All patients received standard postoperative wound care and daily stomal examination. Wound related complications, breakdown, granulation, and infection were recorded for the first 7 days after surgery. A non-inferiority study design was used to test the hypothesis that the Mepilex group had a non-inferior wound complication rate (within 10% margin) compared to the Mepilex Ag group. RESULTS: Eighty-two patients were enrolled; 52 received Mepilex Ag, and 30 received standard Mepilex. There was no difference between the groups with respect to age, sex, race, surgical indication, or postoperative length of stay. Non-inferiority testing demonstrated that the Mepilex standard cohort had no more than 10% greater stomal wound complication rate than that of Mepilex Ag dressing group (p = 0.0108). CONCLUSION: Standard Mepilex was found to be non-inferior to Mepilex Ag in the prevention of tracheotomy stomal wound complications. Standard Mepilex may be used effectively in the postoperative period, potentially reducing costs to caregivers and the institution. Further work is needed to analyze additional factors that could contribute to poor postoperative stoma healing such as bacterial colonization. LEVEL OF EVIDENCE: Randomized Controlled Trial, Level 2 Laryngoscope, 2024.

2.
J Imaging Inform Med ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980628

ABSTRACT

Deep neural networks have shown excellent performance in medical image segmentation, especially for cardiac images. Transformer-based models, though having advantages over convolutional neural networks due to the ability of long-range dependence learning, still have shortcomings such as having a large number of parameters and and high computational cost. Additionally, for better results, they are often pretrained on a larger data, thus requiring large memory size and increasing resource expenses. In this study, we propose a new lightweight but efficient model, namely CapNet, based on convolutions and mixing modules for cardiac segmentation from magnetic resonance images (MRI) that can be trained from scratch with a small amount of parameters. To handle varying sizes and shapes which often occur in cardiac systolic and diastolic phases, we propose attention modules for pooling, spatial, and channel information. We also propose a novel loss called the Tversky Shape Power Distance function based on the shape dissimilarity between labels and predictions that shows promising performances compared to other losses. Experiments on three public datasets including ACDC benchmark, Sunnybrook data, and MS-CMR challenge are conducted and compared with other state of the arts (SOTA). For binary segmentation, the proposed CapNet obtained the Dice similarity coefficient (DSC) of 94% and 95.93% for respectively the Endocardium and Epicardium regions with Sunnybrook dataset, 94.49% for Endocardium, and 96.82% for Epicardium with the ACDC data. Regarding the multiclass case, the average DSC by CapNet is 93.05% for the ACDC data; and the DSC scores for the MS-CMR are 94.59%, 92.22%, and 93.99% for respectively the bSSFP, T2-SPAIR, and LGE sequences of the MS-CMR. Moreover, the statistical significance analysis tests with p-value < 0.05 compared with transformer-based methods and some CNN-based approaches demonstrated that the CapNet, though having fewer training parameters, is statistically significant. The promising evaluation metrics show comparative results in both Dice and IoU indices compared to SOTA CNN-based and Transformer-based architectures.

3.
RSC Adv ; 14(27): 19154-19166, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38887652

ABSTRACT

In this paper, we present the results of research on the thermoluminescence (TL) and optical absorption (OA) properties of colorless natural quartz (including natural quartz samples, sodium ion (Na+) rich samples (by diffusion), and alkali metal (M+) ion poor samples (by sweep)). In detail, the relationship between the TL glow peaks and the emission wavelength was determined. The dynamics parameters (E T, s, τ) have been computed for all TL peaks on the glow curve. The recombination mechanism electron-hole with the participation of the region energy has been determined for all electron traps in the temperature range of 50-430 °C through thermally stimulated conductivity measurement (TSC). Nonlinearity and approaching signal saturation are observed at doses above 22 Gy for the electron trap at 110 °C, above 45 Gy for the electron trap at 238 °C, and 80 Gy for the electron traps at 325 °C and 375 °C. The role of irradiation and heat treatment in the formation of absorption centers as well as the relationship of these centers to electronic traps have been also investigated in detail. The role of M+ ions and hydrogen ions (H+) for the absorption bands in the UV-vis region has been discussed. The results of the combination of the TL measurement and monochromatic light absorption according to temperature show that the TL process occurs concurrently with the reduction of the absorbent center produced in the irradiation process.

4.
Langmuir ; 40(26): 13573-13582, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885642

ABSTRACT

Extensive removal of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) using titania (TiO2) nanoparticles by adsorption and photocatalysis with a surface coating by cetyltrimethylammonium bromide (CTAB) is reported. The CTAB-coated TiO2 nanoparticles (CCTN) were characterized by FT-IR, zeta-potential measurements, and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). 2,4,5-T removal increased significantly after surface modification with CTAB compared with bare TiO2 nanoparticles. Optimal parameters affecting 2,4,5-T removal were found to be pH 4, CCTN dosage 10 mg/mL, and adsorption time 180 min. The maximum adsorptive removal of 2,4,5-T using CCTN reached 96.2% while highest adsorption capacity was 13.4 mg/g. CCTN was also found to be an excellent photocatalyst that achieved degradation efficiency of 99.2% with an initial concentration of 25 mg/L. The removal mechanisms of 2,4,5-T using CCTN by both adsorption and photocatalysis are discussed in detail based on changes in functional group vibrations and surface charge. Our results indicate that CCTN is an excellent material for 2,4,5-T removal in water by both adsorption and photocatalysis.

5.
J Mol Model ; 30(7): 226, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913196

ABSTRACT

CONTEXT: Allene (H2C = C = CH2) and propyne (CH3-C≡CH) are important compounds in the combustion chemistry. They can be created from the reaction of proparyl radicals with water. In this study, therefore, a computational study into the C3H3 + H2O potential energy landscape has been carefully conducted. The computed results indicate that the reaction paths forming the products (allene: CH2CCH2 + •OH) and (propyne: HCCCH3 + •OH) prevail under the 300-2000 K temperature range, where the latter is much more predominant compared to the former. However, these two products are not easily formed under ambient conditions due to the high energy barriers. In the 300 - 2000 K temperature range, the branching ratio for the propyne + •OH product declines from 100 to 86%, whereas the allene + •OH product shows an increase, reaching 14% at 2000 K. The overall bimolecular rate constant of the title reaction can be presented by the modified Arrhenius expression of ktotal = 1.94 × 10-12 T0.14 exp[(-30.55 kcal.mol-1)/RT] cm3 molecule-1 s-1. The total rate constant at the ambient conditions in this work, 2.37 × 10-34 cm3 molecule-1 s-1, was found to be over five orders of magnitude lower than the total rate constant of the C3H3 + NH3 reaction, 7.98 × 10-29 cm3 molecule-1 s-1, calculated by Hue et al. (Int. J. Chem. Kinet. 2020, 4(2), 84-91). The results in this study contribute to elucidating the mechanism of allene and propylene formation from the C3H3 + H2O reaction, and they can be used for modeling C3H3-related systems under atmospheric and combustion conditions. METHODS: All the geometric structures of the C3H3 + H2O system were optimized by the B3LYP method in conjunction with the 6-311 + + G(3df,2p) basis set. Single-point energies of these species were calculated at the CCSD(T)/6-311 + + G(3df,2p) level of theory. The CCSD(T)/CBS level has also been used to compute single-point energies for the two major reaction channels (C3H3 + H2O → allene + •OH and C3H3 + H2O → propyne + •OH). Rate constants and branching ratios of the key reaction channels were calculated in the 300-2000 K temperature interval using the Chemrate software based on the transition state theory (TST) with Eckart tunneling corrections.

6.
Environ Res ; 258: 119396, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871276

ABSTRACT

Adsorption of essential amino acid, Tryptophan (Tryp) on synthesized gibbsite nanoparticles and their applications in eliminating of antibiotic ciprofloxacin (CFX) and bacteria Escherichia coli (E. coli) in aqueous solution. Nano-gibbsite which was successfully fabricated, was characterized by XRD, TEM-SAED, FT-IR, SEM-EDX and zeta potential measurements. The selected parameters for Tryp adsorption on nano-gibbsite to form biomaterial, Tryp/gibbsite were pH 11, gibbsite dosage 20 mg/mL and 1400 mg/L Tryp. The optimum conditions for CFX removal using Tryp/gibbsite were adsorption time 60 min, pH 5, and 20 mg/mL Tryp/gibbsite dosage. The CFX removal significantly raised from 63 to 90% when using Tryp/gibbsite. The Freundlich and pseudo-second-order models achieved the best fits for CFX adsorption isotherm and kinetic on Tryp/gibbsite, respectively. The amount of CFX increased with increasing ionic strength, suggesting that both electrostatic and non-electrostatic interactions were important. After four reused time, CFX removal was greater than 66%, demonstrating that Tryp/gibbsite is reusable with high performance in removing CFX. The application in bacterial activity in term of E. coli reached greater than 98% that was the best material for bacteria inactivation. The present study reveals that Tryp/gibbsite is an excellent bio-material for removing CFX and E. coli.

7.
J Mol Model ; 30(6): 169, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750281

ABSTRACT

CONTEXT: An ab initio investigation into the potential energy landscape of the meta-aminotoluene + •OH reaction has been conducted in this study. The calculated results reveal that the reaction channel leading to the product (NHC6H4CH3 + H2O) prevails under the 300-1700 K temperature range, while the reaction path forming the product (NH2C6H4CH2 + H2O) dominates in the higher-temperature region (T ≥ 1800 K). Within the specified temperature range, the product branching ratio for the former declines from 48 to 30%, while the latter shows an increase, reaching 29%. The overall second-order rate constants of the titled reaction obtained at the pressure 760 Torr (N2) can be illustrated by the modified Arrhenius expression of ktotal = 1.46 × 10-13 T0.58 exp[(-0.759 kcal.mol-1)/RT] cm3 molecule-1 s-1 and ktotal = 1.86 × 10-22 T3.24 exp[(-5.086 kcal.mol-1)/RT] cm3 molecule-1 s-1, covering the temperature range of T = 300-600 K and T > 600 K, respectively. The total rate constant at the ambient conditions in this work, 1.43 × 10-11 cm3 molecule-1 s-1, has been found to be roughly one order of magnitude lower than the available experimental data, ~ 1.2 × 10-10 cm3 molecule-1 s-1, measured by Atkinson et al., Rinke et al., and Witte et al., or the theoretical value, 4.4 × 10-10 cm3 molecule-1 s-1, and calculated by Abdel-Rahman and co-workers for the aniline + •OH reaction. METHODS: The structures of reactants, transition states, intermediate states, and products of the meta-aminotoluene + •OH reaction are calculated with the aug-cc-pVTZ basis set and the methods DFT/B3LYP and CCSD(T). The rate constants and branching ratios in the 300-2000 K temperature range are calculated with the statistical theoretical TST and RRKM master equation computations including tunneling corrections, with potential energy surface constructed by the CCSD(T)//B3LYP/aug-cc-pVTZ approach.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124137, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38479225

ABSTRACT

A simple paper-based chromatography coupling with nickel foam decorated Au nanodendrite (PP-AuND/NiF) was fabricated for simultaneous separation and surface-enhanced Raman scattering (SERS) detection of Rhodamine-6G (R6G) from a mixture of analytes. The three-dimensional porous nickel foam (NiF) was employed as a sampling diffusion platform, and AuND with a high surface active area beneficial for SERS efficiency was electro-deposited directly onto the NiF frame. The structure of AuND/NiF was characterized by X-ray diffraction and scanning electron microscopy. The AuND/NiF could detect R6G at 0.1 nM, and the enhancement factor was 1.84 x 106. The AuND/NiF was durable, with a slight signal decrease after 6 m of drop-testing. Also, upon three days of exposure to ambient air, the signal droped only 3.35 %. Subsequently, the PP-AuND/NiF was constructed by directly situating AuND/NiF on a paper strip, serving as a sample in and out to AuND/NiF. A mixture of two SERS active compounds, namely 2-Naphthalenethiol (2-NpSH) and Rhodamine 6G (R6G), was prepared in ethanol: water (1:1) solution to evaluate PP-AuND/NiF separation capability. Raman measurements along different distances of AuND/NiF were performed, and the signal of 2-NpSH was dismissed after 3.0 mm, while R6G's signals were observed throughout AuND/NiF. In general, the PP-AuND/NiF demonstrated effective separation and SERS measurement of analytes in a mixture, which could be applicable for more complex samples in the future, especially in clinical analysis.

9.
J Clin Tuberc Other Mycobact Dis ; 35: 100431, 2024 May.
Article in English | MEDLINE | ID: mdl-38523706

ABSTRACT

Objective: We conducted a descriptive analysis of multi-drug resistant tuberculosis (MDR-TB) in Vietnam's two largest cities, Hanoi and Ho Chi Minh city. Methods: All patients with rifampicin resistant tuberculosis were recruited from Hanoi and surrounding provinces between 2020 and 2022. Additional patients were recruited from Ho Chi Minh city over the same time period. Demographic data were recorded from all patients, and samples collected, cultured, whole genome sequenced and analysed for drug resistance mutations. Genomic susceptibility predictions were made on the basis of the World Health Organization's catalogue of mutations in Mycobacterium tuberculosis associated with drug resistance, version 2. Comparisons were made against phenotypic drug susceptibility test results where these were available. Multivariable logistic regression was used to assess risk factors for previous episodes of tuberculosis. Results: 233/265 sequenced isolates were of sufficient quality for analysis, 146 (63 %) from Ho Chi Minh City and 87 (37 %) from Hanoi. 198 (85 %) were lineage 2, 20 (9 %) were lineage 4, and 15 (6 %) were lineage 1. 17/211 (8 %) for whom HIV status was known were infected, and 109/214 (51 %) patients had had a previous episode of tuberculosis. The main risk factor for a previous episode was HIV infection (odds ratio 5.1 (95 % confidence interval 1.3-20.0); p = 0.021). Sensitivity for predicting first-line drug resistance from whole genome sequencing data was over 90 %, with the exception of pyrazinamide (85 %). For moxifloxacin and amikacin it was 50 % or less. Among rifampicin-resistant isolates, prevalence of resistance to each non-first-line drug was < 20 %. Conclusions: Drug resistance among most MDR-TB strains in Vietnam's two largest cities is confined largely to first-line drugs. Living with HIV is the main risk factor among patients with MDR-TB for having had a previous episode of tuberculosis.

10.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38466092

ABSTRACT

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Tuberculosis, Multidrug-Resistant , Adult , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/cerebrospinal fluid , Mycobacterium tuberculosis/genetics , Pyrazinamide , Sensitivity and Specificity , Rifampin/pharmacology , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology , Cerebrospinal Fluid , Microbial Sensitivity Tests
11.
Opt Express ; 32(3): 3673-3687, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297583

ABSTRACT

We report on a unique photonic quantum source chip highly integrating four-stage photonic elements in a lithium niobate (LN) waveguide circuit platform, where an aperiodically poled LN (APPLN) electro-optic (EO) polarization mode converter (PMC) is sandwiched between two identical type-0 PPLN spontaneous parametric down-converters (SPDCs), followed by an EO phase controller (PC). These core nonlinear optic and EO building blocks on the chip are systematically characterized stage by stage to show its high performance as an integrated quantum source. The APPLN EO PMC, optimally constructed by a genetic algorithm, is characterized to have a broad bandwidth (>13 nm), benefiting an efficient control of broadband type-0 SPDC photon pairs featuring a short correlation time. We demonstrate an efficient conversion of the |VV> photon-pair state generated from the first PPLN SPDC stage to the |HH> state through the APPLN EO PMC stage over its operating bandwidth, a broadband or broadly tunable polarization-entangled state can thus be possibly produced via the superposition of the |VV> state generated from the other PPLN SPDC on the third stage of the chip. Such a state can be further manipulated into two of the Bell states if the relative phases between the two polarization states can be properly modulated through the EO PC on the fourth stage of the chip. Such a multifunction integrated quantum photonic source chip can be of high value to developing a compact, efficient, and high-speed quantum information processor.

12.
Nanoscale ; 16(11): 5537-5545, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38414383

ABSTRACT

As one of the most fundamental building blocks of life, RNA plays critical roles in diverse biological processes, from X chromosome inactivation, genome stability maintenance, to embryo development. Being able to visualize the localization and dynamics of RNA can provide critical insights into these fundamental processes. In this review, we provide an overview of current methods for live-cell RNA imaging with a focus on methods for visualizing RNA in living mammalian cells with single-molecule resolution.


Subject(s)
Diagnostic Imaging , RNA , Animals , Mammals
13.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045287

ABSTRACT

Antibiotic tolerance in Mycobacterium tuberculosis leads to less effective bacterial killing, poor treatment responses and resistant emergence. There is limited understanding of antibiotic tolerance in clinical isolates of M. tuberculosis. Therefore, we investigated the rifampicin tolerance of M. tuberculosis isolates, with or without pre-existing isoniazid-resistance. In-vitro rifampicin survival fractions determined by minimum duration of killing assay in isoniazid susceptible (n=119) and resistant (n=84) M. tuberculosis isolates. Rifampicin tolerance was correlated with bacterial growth, rifampicin minimum inhibitory concentrations (MICs) and isoniazid-resistant mutations. The longitudinal isoniazid-resistant isolates were analyzed for rifampicin tolerance based on collection time from patients and associated emergence of genetic variants. The median duration of rifampicin exposure reducing the M. tuberculosis surviving fraction by 90% (minimum duration of killing-MDK90) increased from 1.23 (95%CI 1.11; 1.37) and 1.31 (95%CI 1.14; 1.48) to 2.55 (95%CI 2.04; 2.97) and 1.98 (95%CI 1.69; 2.56) days, for IS and IR respectively, during 15 to 60 days of incubation respectively. Increase in MDK90 time indicated the presence of fast and slow growing tolerant sub-populations. A range of 6 log10-fold survival fraction enabled classification of tolerance as low, medium or high and revealed isoniazid-resistance association with increased tolerance with faster growth (OR=2.68 for low vs. medium, OR=4.42 for low vs. high, P-trend=0.0003). The high tolerance in longitudinal isoniazid-resistant isolates was specific to those collected during rifampicin treatment in patients and associated with bacterial genetic microvariants. Our study identifies a range of rifampicin tolerance and reveals that isoniazid resistance is associated with higher tolerance with growth fitness. Furthermore, rifampicin treatment may select isoniazid-resistant isolate microvariants with higher rifampicin tolerance, with survival potential similar to multi-drug resistant isolates. These findings suggest that isoniazid-resistant tuberculosis needs to be evaluated for rifampicin tolerance or needs further improvement in treatment regimen. It is made available under a CC-BY 4.0 International license.

14.
Int J Equity Health ; 22(1): 251, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053205

ABSTRACT

BACKGROUND: Existing research on health equity falls short of identifying a comprehensive set of indicators for measurement across health systems. Health systems in the ASEAN region, in particular, lack a standardised framework to assess health equity. This paper proposes a comprehensive framework to measure health equity in the ASEAN region and highlights current gaps in data availability according to its indicator components. METHODS: A comprehensive literature review was undertaken to map out a core set of indicators to evaluate health equity at the health system level. Secondary data collection was subsequently conducted to assess current data availability for ASEAN states in key global health databases, national health accounts, and policy documents. RESULTS: A robust framework to measure health equity was developed comprising 195 indicators across Health System Inputs and Processes, Outputs, Outcomes, and Contextual Factors. Total indicator data availability equated to 72.9% (1423/1950). Across the ASEAN region, the Inputs and Processes sub-component of Health Financing had complete data availability for all indicators (160/160, 100%), while Access to Essential Medicine had the least data available (6/30, 20%). Under Outputs and Outcomes, Coverage of Selected Interventions (161/270, 59.63%) and Population Health (350/350, 100%) respectively had the most data available, while other indicator sub-components had little to none (≤ 38%). 72.145% (384/530) of data is available for all Contextual Factors. Out of the 10 ASEAN countries, the Philippines had the highest data availability overall at 77.44% (151/195), while Brunei Darussalam and Vietnam had the lowest data availability at 67.18% (131/195). CONCLUSIONS: The data availability gaps highlighted in this study underscore the need for a standardised framework to guide data collection and benchmarking of health equity in ASEAN. There is a need to prioritise regular data collection for overlooked indicator areas and in countries with low levels of data availability. The application of this indicator framework and resulting data availability analysis could be conducted beyond ASEAN to enable cross-regional benchmarking of health equity.


Subject(s)
Health Equity , Population Health , Humans , Health Status , Global Health , Data Collection
15.
Materials (Basel) ; 16(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138764

ABSTRACT

In recent years, there has been a significant interest in the advancement of electrochemical sensing platforms to detect pesticides with high sensitivity and selectivity. Current research presents a novel approach utilising platinum nanoparticles (NPs) and reduced graphene oxide deposited on a glassy carbon electrode (Pt-rGO/GCE) for direct electrochemical measurement of carbendazim (CBZ). A straightforward one-step electrodeposition process was applied to prepare the Pt-rGO sensing platform. The incorporation of conductive rGO nanosheets along with distinctive structured Pt NPs significantly enhanced the effective electrode surface area and electron transfer of CBZ. Additionally, when exposed to 50 µM CBZ, Pt-rGO/GCE exhibited a higher current response compared to the bare electrode. Further investigations were performed to analyse and optimise the experimental parameters that could influence pesticide detection. Under the optimised conditions of pH 7 and 5 min of accumulation time, the Pt-rGO/GCE sensor showed a linear concentration detection range from 0.1 µM to 50 µM, with a detection limit of 3.46 nM. The fabricated sensor was successfully employed for CBZ detection in milk and tap water with 98.88% and 98.57% recovery, respectively. The fabricated sensor showed higher sensitivity and reproducibility, thus indicating the potential of this technology in the development of reliable sensors for the detection of CBZ or similar pesticides in forthcoming applications.

16.
Phys Med ; 115: 103145, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37852020

ABSTRACT

PURPOSE: The aim of this study was (a) to optimise the99mTc-SPECT reconstruction parameters for the pre-treatment dosimetry of90Y-selective internal radiation therapy (SIRT) and (b) to compare the accuracy of clinical dosimetry methods with full Monte-Carlo dosimetry (fMCD) performed with Gate. METHODS: To optimise the reconstruction parameters, two hundred reconstructions with different parameters were performed on a NEMA phantom, varying the number of iterations, subsets, and post-filtering. The accuracy of the dosimetric methods was then investigated using an anthropomorphic phantom. Absorbed dose maps were generated using (1) the Partition Model (PM), (2) the Dose Voxel Kernel (DVK) convolution, and (3) the Local Deposition Method (LDM) with known activity restricted to the whole phantom (WP) or to the liver and lungs (LL). The dose to the lungs was calculated using the "multiple DVK" and "multiple LDM" methods. RESULTS: Optimal OSEM reconstruction parameters were found to depend on object size and dosimetric criterion chosen (Dmean or DVH-derived metric). The Dmean of all three dosimetric methods was close (≤ 10%) to the Dmean of fMCD simulations when considering large segmented volumes (whole liver, normal liver). In contrast, the Dmean to the small volume (∅=31) was systemically underestimated (12%-25%). For lungs, the "multiple DVK" and "multiple LDM" methods yielded a Dmean within 20% for the WP method and within 10% for the LL method. CONCLUSIONS: All three methods showed a substantial degradation of the dose-volume histograms (DVHs) compared to fMCD simulations. The DVK and LDM methods performed almost equally well, with the "multiple DVK" method being more accurate in the lungs.


Subject(s)
Liver , Radiometry , Monte Carlo Method , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon , Yttrium Radioisotopes
17.
Environ Res ; 236(Pt 2): 116795, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37541412

ABSTRACT

Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.


Subject(s)
Metal-Organic Frameworks , Uranium , Water Pollutants, Chemical , Humans , Water , Adsorption , Water Pollutants, Chemical/analysis
18.
Cancers (Basel) ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37509337

ABSTRACT

Opioid switching is a common practice of substituting one opioid for another to improve analgesia or adverse effects; however, it has limited evidence. This study aimed to examine the effectiveness of opioid switching in advanced cancer. This multi-center prospective cohort study recruited patients assessed to switch opioids (opioid switch group) or to continue ongoing opioid treatment (control group). Clinical data (demographics, opioids) and validated instruments (pain and adverse effects) were collected over two timepoints seven days apart. Descriptive analyses were utilized. Non-parametric tests were used to determine differences. Fifty-four participants were recruited (23 control group, 31 switch group). At the follow-up, opioid switching reduced pain (worst, average, and now) (p < 0.05), uncontrolled breakthrough pain (3-fold reduction, p = 0.008), and psychological distress (48% to 16%, p < 0.005). The switch group had a ≥25% reduction in the reported frequency of seven moderate-to-severe adverse effects (score ≥ 4), compared to a reduction in only one adverse effect in the control group. The control group experienced no significant pain differences at the follow-up. Opioid switching is effective at reducing pain, adverse effects, and psychological distress in a population with advanced cancer pain, to levels of satisfactory symptom control in most patients within 1 week.

19.
Chem Asian J ; 18(17): e202300404, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37440587

ABSTRACT

Highly positively charged poly(vinyl benzyl trimethylammonium chloride) (PVBMA) was successfully synthesized with approximately 82% of yield. The PVBMA was characterized by the molecular weight (Mw ) of 343.45 g mol-1 and the molecular weight distribution, (D) of 2.4 by 1 H NMR and SEC measurements. The PVBMA was applied as an effective agent for α-Al2 O3 surface modification in the adsorptive removal of the azo dye acid orange G (AOG). The AOG removal performance was significantly enhanced at all pH compared to without surface modification. The experimental parameters were optimal at pH 8, free ionic strength, 15 min of adsorption time, and 5 mg mL-1 α-Al2 O3 adsorbents. The AOG adsorption which was mainly controlled by the PVBMA-AOG electrostatic attractions was better applicable to the Langmuir isotherm and the pseudo-second kinetic model. The PVBMA-modified α-Al2 O3 demonstrates a high-performance and highly reusable adsorbent with great AOG performances of approximately 90.1% after 6 reused cycles.

20.
Langmuir ; 39(19): 6780-6793, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37140431

ABSTRACT

Aerogels are becoming a promising platform to fabricate photothermal materials for use in solar steam generation (SSG), which have remarkable application potential in solar desalination, due to their excellent thermal management, salt resistance, and considerable water evaporation rate. In this work, a novel photothermal material is fabricated by forming a suspension between sugarcane bagasse fibers (SBF) and poly(vinyl alcohol), tannic acid (TA), and Fe3+ solutions via hydrogen bonds of hydroxyl groups. After freeze drying, the fabricated SBF aerogel-based photothermal (SBFAP) material possesses a 3D interconnected porous microstructure, which could enhance water transportation ability, reduce thermal conductivity, and quickly dissolve salt crystals on the SBFAP surface. Thanks to the formation of micro/nanosized complexes between TA and Fe3+ ions on the SBFAP material, the SBFAP exhibits high light capture and water evaporation rate (2.28 kg m-2 h-1). In particular, due to strong hydrogen bonding and the SBF, the SBFAP material is reinforced, thereby exhibiting excellent structural stability in seawater. Moreover, the high salt tolerance of SBFAP favors its high desalination performance for at least 76 days of continuous evaporation under actual conditions. This research paves the way for the fabrication of natural cellulose fiber-based photothermal materials for application in solar desalination.

SELECTION OF CITATIONS
SEARCH DETAIL
...