Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 694, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184748

ABSTRACT

Meta-heuristic algorithms distinguish themselves from conventional optimization methods owing to their intrinsic adaptability and straightforward implementation. Among them, the sine cosine algorithm (SCA) is lauded for its ability to transition seamlessly between exploration and exploitation phases throughout the optimization process. However, there exists potential for enhancing the balance that SCA maintains between exploration and exploitation. To augment the proficiency in global optimization of SCA, an innovative strategy-nSCA-that integrates the roulette wheel selection (RWS) with opposition-based learning was formulated. The robustness of nSCA was rigorously evaluated against leading-edge methods such as the genetic algorithm (GA), particle swarm optimization, moth-flame optimization, ant lion optimization, and multi-verse optimizer, as well as the foundational SCA. This evaluation included benchmarks set by both CEC 2019 and CEC 2021 test functions. Additionally, the performance of nSCA was confirmed through numerous practical optimization problems, emphasizing its effectiveness in applied settings. In all evaluations, nSCA consistently showcased superior performance compared to its evolutionary algorithm counterparts, delivering top-tier solutions for both benchmark functions and real-world optimization challenges. Given this compelling evidence, one can posit that nSCA serves as a strong candidate for addressing intricate optimization challenges found in real-world contexts, regardless of whether they are of a discrete or continuous nature.

2.
Sci Rep ; 14(1): 793, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191905

ABSTRACT

The present study focuses on the problem of vehicle routing with limited capacity, with the objective of minimizing the transportation distance required to serve h clients with predetermined locations and needs. The aim is to create k trips that cover the shortest possible distance. To achieve this goal, a hybrid whale optimization algorithm (hGWOA) is proposed, which combines the whale optimization algorithm (WOA) with the grey wolf optimizer (GWO). The proposed hybrid model is comprised of two main steps. First step, the GWO's hunting mechanism is integrated transitioning to the utilization phase of WOA, and a newly devised state is introduced that is linked to GWO. In the second step, a novel technique is incorporated into the exploration mission phase to enhance the resolve after per iteration. The algorithm's performance is assessed and compared with other modern algorithms, including the GWO, WOA, ant lion optimizer (ALO), and dragonfly algorithm (DA) using 23 benchmark test functions and CEC2017 benchmark test function. The results indicate that the hybrid hGWOA method outperforms other algorithms in terms of delivery distance optimization for scenarios involving scale and complexity. These findings are corroborated through case studies related to cement delivery and a real-world scenario in Viet Nam.

3.
Sci Rep ; 13(1): 22212, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097706

ABSTRACT

The global construction industry plays a pivotal role, yet its unique characteristics pose distinctive challenges. Each construction project, marked by its individuality, substantial value, intricate scale, and constrained adaptability, confronts crucial limitations concerning time and cost. Despite contributing significantly to environmental concerns throughout construction activities and infrastructure operations, environmental considerations remain insufficiently addressed by project managers. This research introduces an improved rendition of the muti-objective grasshopper optimization algorithm (MOGOA), termed eMOGOA, as a novel methodology to tackle time, cost, and carbon dioxide emission trade-off problems (TCCP) in construction project management. To gauge its efficacy, a case study involving 29 activities is employed. eMOGOA amalgamates MOGOA, tournament selection (TS), and opposition-based learning (OBL) techniques to enhance the performance of the original MOGOA. The outcomes demonstrate that eMOGOA surpasses other optimization algorithms, such as MODA, MOSMA, MOALO and MOGOA when applied to TCCP. These findings underscore the efficiency and relevance of the eMOGOA algorithm within the realm of construction project management.

4.
Sci Rep ; 12(1): 1065, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058495

ABSTRACT

The building sector is the largest energy consumer accounting for 40% of global energy usage. An energy forecast model supports decision-makers to manage electric utility management. Identifying optimal values of hyperparameters of prediction models is challenging. Therefore, this study develops a novel time-series Wolf-Inspired Optimized Support Vector Regression (WIO-SVR) model to predict 48-step-ahead energy consumption in buildings. The proposed model integrates the support vector regression (SVR) and the grey wolf optimizer (GWO) in which the SVR model serves as a prediction engine while the GWO is used to optimize the hyperparameters of the SVR model. The 30-min energy data from various buildings in Vietnam were adopted to validate model performance. Buildings include one commercial building, one hospital building, three authority buildings, three university buildings, and four office buildings. The dataset is divided into the learning data and the test data. The performance of the WIO-SVR was superior to baseline models including the SVR, random forests (RF), M5P, and decision tree learner (REPTree). The WIO-SVR model obtained the highest value of correlation coefficient (R) with 0.90. The average root-mean-square error (RMSE) of the WIO-SVR was 2.02 kWh which was more accurate than those of the SVR model with 10.95 kWh, the RF model with 16.27 kWh, the M5P model with 17.73 kWh, and the REPTree model with 26.44 kWh. The proposed model improved 442.0-1207.9% of the predictive accuracy in RMSE. The reliable WIO-SVR model provides building managers with useful references in efficient energy management.

SELECTION OF CITATIONS
SEARCH DETAIL
...