Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 8071, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26314620

ABSTRACT

Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a 'pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections.

2.
Chem Commun (Camb) ; 50(92): 14433-5, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25302478

ABSTRACT

New, active and stable catalysts competitive to Pt catalysts are necessary for fuel cell development. Here, we present few-layered graphene-supported Pd, revealing a performance superior to Pt/C and Pd/C ORR (positive half-wave potential shift E(1/2) by 50 mV, approximately one order of magnitude higher area- and mass-normalized current densities, I(area), I(mass), after 2500 cycles). The catalyst preparation is easily scalable, simple, inexpensive and eco-friendly.

3.
Nat Commun ; 5: 4109, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24916201

ABSTRACT

The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting.

4.
J Chem Phys ; 124(18): 184705, 2006 May 14.
Article in English | MEDLINE | ID: mdl-16709129

ABSTRACT

The growth of multiwalled carbon nanotubes (MWCNTs) produced by a catalytic chemical vapor deposition (CCVD) process has been monitored using a tapered element oscillating microbalance (TEOM) probe. This technique displays a high sensitivity (<1 microg). Growths in the TEOM microreactor are investigated with catalytic particles (Fe, Ni) dispersed on different supports. First, high surface area FeAl2O3 or Fe (Ni) exchanged on zeolite powders is used. Second, growths are performed on array of nickel dots or FeSi-nc particles dispersed on large holes patterned on Si(100) substrates. An accurate monitoring of the early stages of growth permits a precise evaluation of the growth rates and shows substantial differences between these samples which greatly differ by the surface area. On catalysts dispersed on Si(100) the mass uptake is linear throughout the process. On high surface area catalysts, however, a saturation of the mass uptake is indifferently observed. This saturation is explained either by diffusion limitation by the growing MWCNTs or by internal diffusion through the pores or external diffusion through the grains of the catalyst. The kinetic dependence with partial pressure of the incoming C2H6:H2 gas mixture is then explored on the FeAl2O3 catalyst. A linear dependence of the MWCNT growth an (P(C2H6)/P(H2))(1/2) is found. A simple model is then developed that accounts for this dependence only if an associative and competitive adsorption of ethane is the rate determining step of the overall process. These results thus bring insight to improve and control the CCVD growth kinetics of MWCNTs.

5.
Chem Commun (Camb) ; (20): 2418-9, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12430469

ABSTRACT

Preparation and characterisation of a highly active and stable beta zeolite supported on a pre-shaped silicon carbide catalyst for the benzoylation reaction in liquid phase.

6.
Chem Commun (Camb) ; (17): 1882-3, 2002 Sep 07.
Article in English | MEDLINE | ID: mdl-12271656

ABSTRACT

Cobalt ferrite nanowires with an average diameter of 50 nm and lengths up to several micrometers were synthesized inside carbon nanotubes under mild reaction conditions using the confinement effect provided by the carbon tubular template.

7.
Chem Commun (Camb) ; (9): 954-5, 2002 May 07.
Article in English | MEDLINE | ID: mdl-12123065

ABSTRACT

Graphite felt supporting 40 nm diameter carbon nanofibers was synthesized and successfully used as a support for a high loaded iridium catalyst (30 wt%) in the decomposition of hydrazine; a strong mechanical resistance and a high thermal conductivity led to a very efficient and stable catalyst as compared to that used industrially, iridium supported on a high surface area alumina.

SELECTION OF CITATIONS
SEARCH DETAIL
...