Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(1): 271-278, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643563

ABSTRACT

In this paper, we develop a method for Friedel-Crafts acylation using metal triflate in deep eutectic solvents. Various metal triflates were tested and provided good to excellent yields of corresponding ketone products. The density functional theory calculation revealed the metal effects on the formation of active intermediate acylium triflate as well as the acidic condition. The metal triflate in the deep eutectic solvent can be recovered and reused with a little loss in the catalytic activity.

2.
Org Biomol Chem ; 19(42): 9260-9265, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34657949

ABSTRACT

The synthesis and evaluation of a new anion receptor based on the 4-amido-1,8-naphthalimide scaffold is described. The findings indicate that the amide N-H is an enhanced H-bond donor but is otherwise restricted in its ability to participate in the binding of simple anions.

3.
Materials (Basel) ; 13(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722606

ABSTRACT

A new type of zeolite-based covalent organic frameworks (ZCOFs) was designed under different topologies and linkers. In this study, the silicon atoms in zeolite structures were replaced by carbon atoms in thiophene, furan, and pyrrole linkers. Through the adoption of this strategy, 300 ZCOFs structures were constructed and simulated. Overall, the specific surface area of ZCOFs is in the range of 300-3500 m2/g, whereas the pore size is distributed from 3 to 27 Å. Furthermore, the pore volume exhibits a wide range between 0.01 and 1.5 cm3/g. Screening 300 ZCOFs with the criteria towards methane storage, 11 preliminary structures were selected. In addition, the Grand Canonical Monte Carlo technique was utilized to evaluate the CH4 adsorption ability of ZCOFs in a pressure ranging from 1 to 85 bar at a temperature of 298 K. The result reveals that two ZCOF structures: JST-S 183 v/v (65-5.8 bar) and NPT-S 177 v/v (35-1 bar) are considered as potential adsorbents for methane storage. Furthermore, the thermodynamic stability of representative structures is also checked base on quantum mechanical calculations.

4.
RSC Adv ; 9(50): 29440-29447, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-35528447

ABSTRACT

In this work, we first investigate the localized electronic states in the band structures of three single-layer COFs based on typical building units of COFs chemistry. Our results confirm that the polar nature of strong bonds in these building units is a hindrance to a fully delocalized structure and disfavors the band-like mechanism of transport. We then show that a rational design of the building units can lead to dispersive band states in the electronic structure and results in conducting single-layer COFs. We demonstrate this strategy by investigating the charge carrier transport in a series of single-layer Ni-phthalocyanine (NiPc) covalent organic frameworks (COFs), namely, NiPc-P, NiPc-2P, and NiPc-3P. Three proposed COFs exhibit semiconducting band gaps ranging from 0.55 to 0.91 eV. Their room-temperature intrinsic mobility is predicted to be in range of 200-600 cm2 V-1 s-1 and 20 000-60 000 cm2 V-1 s-1 for electrons and holes, respectively, which are comparable to those of phosphorene and higher than those of the trigonal prismatic molybdenum disulfide. NiPc are dynamically and mechanically stable and can be synthesized via the co-evaporation between Ni and corresponding tetracyano linkers. Importantly, we demonstrate that the properties of the single-layer COFs can be tuned by engineering the organic building blocks. Our theoretical study not only provides insight into the design principles for semiconducting single-layer COFs but also highlights the significance of reticular chemistry in the development of a new generation of two-dimensional materials for optoelectronic applications.

5.
J Phys Chem A ; 120(3): 346-55, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26741404

ABSTRACT

The dissociation dynamics of the O-H bond in Al-OH2 is investigated on an approximated ab initio potential energy surface (PES). By adopting a dynamic sampling method, we obtain a database of 92 834 configurations. The potential energy for each point is calculated using MP2/6-311G (3df, 2p) calculations; then, a 60-neuron feed-forward neural network is utilized to fit the data to construct an analytic PES. The root-mean-square error (rmse) for the training set is reported as 0.0036 eV, while the rmse for the independent testing set is 0.0034 eV. Such excellent fitting accuracy indeed confirms the reliability of the constructed PES. Subsequently, quasi-classical molecular dynamics (MD) trajectories are performed on the constructed PES at various levels of vibrational excitation in the range of 1.03 to 2.23 eV to investigate the probability of O-H bond dissociation. The results indicate a linear relationship between reaction probability and internal energy, from which we can determine the minimum activation internal energy required for the dissociation as 0.62 eV. Moreover, the O-H bond rupture is shown to be highly correlated with the formation of Al-O bond.

6.
Chem Asian J ; 10(12): 2660-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26257077

ABSTRACT

New Zr(IV)- and Hf(IV)-based metal-organic framework photocatalysts, termed VNU-1 and VNU-2 (where VNU = Vietnam National University), were synthesized and their resulting structures fully characterized. By employing a highly π-conjugated linker, namely 1,4-bis(2-[4-carboxyphenyl]ethynyl)benzene, the optical absorption properties were effectively red-shifted into the visible light region. This strategy, coupled with the high water stability of the materials, led to enhanced MOF-driven photocatalytic degradation, under ultraviolet-visible light, of organic dye pollutants commonly found in wastewater.

7.
J Phys Chem A ; 109(12): 2957-63, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-16833615

ABSTRACT

We have investigated the basicity of phosphinine (C5H5P, phosphabenzene) in reevaluating its proton affinity (PA) and gas-phase basicity (GB) and the pK(a) value of its protonated form. As a necessary step, we have first determined its gas-phase proton affinity. Using both mass spectrometric and quantum chemical methods, we have obtained the values PA(C5H5P) = 195.8 +/- 1.0 kcal mol(-1) and GB(298)(C5H5P) = 188.1 +/- 1.0 kcal mol(-1), in good agreement with previous results. We then derived a value of pK(a)(C5H6P+) = -16.1 +/- 1.0 in aqueous solution using three different approaches: the latter markedly differs from the currently available value of -10. The reason for such a discrepancy in the pK(a) of protonated phosphinine in solution is discussed. In the theoretical determination of PAs, evaluation of the basis set superposition error (BSSE) showed that this effect is quite small, being 0.1-0.2 kcal mol(-1) for phosphinine, when a density functional theory (DFT) method in conjunction with a large basis set were used.

SELECTION OF CITATIONS
SEARCH DETAIL
...