Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(10)2023 05 10.
Article in English | MEDLINE | ID: mdl-37408195

ABSTRACT

Interleukin 10 (IL-10) exerts anti-inflammatory and immune regulatory roles through its fixation to the IL-10 receptor (IL-10R). The two subunits (IL-10Rα and IL-10Rß) organise themselves to form a hetero-tetramer to induce the activation of the transcription factor STAT3. We analysed the activation patterns of the IL-10R, especially the contribution of the transmembrane (TM) domain of the IL-10Rα and IL-10Rß subunits, as evidence accumulates that this short domain has tremendous implications in receptor oligomerisation and activation. We also addressed whether targeting the TM domain of IL-10R with peptides mimicking the TM sequences of the subunits translates into biological consequences. The results illustrate the involvement of the TM domains from both subunits in receptor activation and feature a distinctive amino acid crucial for the interaction. The TM peptide targeting approach also appears to be suitable for modulating the activation of the receptor through its action on the dimerization capabilities of the TM domains and thereby constitutes a potential new strategy for the modulation of the inflammation in pathologic contexts.


Subject(s)
Gene Expression Regulation , Transcription Factors , Receptors, Interleukin-10 , Signal Transduction , Amino Acids
2.
Cell Mol Life Sci ; 78(13): 5257-5273, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34019104

ABSTRACT

In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.


Subject(s)
Cell Differentiation , Multiple Sclerosis/therapy , Oligodendroglia/cytology , Regeneration , Remyelination , Animals , Humans , Oligodendroglia/physiology
3.
EMBO Mol Med ; 11(11): e10378, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31566924

ABSTRACT

Current treatments in multiple sclerosis (MS) are modulating the inflammatory component of the disease, but no drugs are currently available to repair lesions. Our study identifies in MS patients the overexpression of Plexin-A1, the signalling receptor of the oligodendrocyte inhibitor Semaphorin 3A. Using a novel type of peptidic antagonist, we showed the possibility to counteract the Sema3A inhibitory effect on oligodendrocyte migration and differentiation in vitro when antagonizing Plexin-A1. The use of this compound in vivo demonstrated a myelin protective effect as shown with DTI-MRI and confirmed at the histological level in the mouse cuprizone model of induced demyelination/remyelination. This effect correlated with locomotor performances fully preserved in chronically treated animals. The administration of the peptide also showed protective effects, leading to a reduced severity of demyelination in the context of experimental autoimmune encephalitis (EAE). Hence, the disruption of the inhibitory microenvironmental molecular barriers allows normal myelinating cells to exert their spontaneous remyelinating capacity. This opens unprecedented therapeutic opportunity for patients suffering a disease for which no curative options are yet available.


Subject(s)
Multiple Sclerosis/physiopathology , Nerve Tissue Proteins/metabolism , Oligodendroglia/physiology , Receptors, Cell Surface/metabolism , Remyelination , Semaphorin-3A/metabolism , Signal Transduction , Animals , Brain/diagnostic imaging , Cell Line , Cell Movement , Cell Proliferation , Disease Models, Animal , Magnetic Resonance Imaging , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Receptors, Cell Surface/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...