Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Can Urol Assoc J ; 18(7): E220-E227, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074990

ABSTRACT

INTRODUCTION: With advancements in laser technology, urologists have been able to treat urinary calculi more efficiently by increasing the energy delivered to the stone. With increases in power used, there is an increase in temperatures generated during laser lithotripsy. The aim of this study was to evaluate the thermal dose and temperatures generated with four laser settings at a standardized power in a high-fidelity, anatomic model. METHODS: Using high-fidelity, 3D-printed hydrogel models of a pelvicalyceal collecting system with a synthetic BegoStone implanted in the renal pelvis, surgical simulation of ureteroscopic laser lithotripsy was performed with the Moses 2.0 holmium laser. At a standard power (40 W) and irrigation pressure (100 cm H2O), we evaluated operator duty cycle (ODC) variations with different time-on intervals at four different laser settings. Temperature was measured at two separate locations: at the stone and ureteropelvic junction. RESULTS: Greater cumulative thermal doses and maximal temperatures were achieved with greater ODCs and longer laser activation periods. There were statistically significant differences between the thermal doses and temperature profiles of the laser settings evaluated. Temperatures were greater closer to the tip of the laser fiber. CONCLUSIONS: Laser energy and frequency play an important role in the thermal loads delivered during laser lithotripsy. Urologists must perform laser lithotripsy cautiously when aggressively treating large renal pelvis stones, as dangerous temperatures can be reached. To reduce the risk of causing thermal tissue injury, urologists should consider reducing their ODC and laser-on time.

2.
Can Urol Assoc J ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38466866

ABSTRACT

INTRODUCTION: With advancements in laser technology, urologists have been able to treat urinary calculi more efficiently by increasing the energy delivered to the stone. With increases in power used, there is an increase in temperatures generated during laser lithotripsy. The aim of this study was to evaluate the thermal dose and temperatures generated with four laser settings at a standardized power in a high-fidelity, anatomic model. METHODS: Using high-fidelity, 3D printed hydrogel models of a pelvicalyceal collecting system with a synthetic BegoStone implanted in the renal pelvis, surgical simulation of ureteroscopic laser lithotripsy was performed with the Moses 2.0 holmium laser. At a standard power (40 W) and irrigation pressure (100 cm H2O), we evaluated operator duty cycle (ODC) variations with different time-on intervals at four different laser settings. Temperature was measured at two separate locations: at the stone and ureteropelvic junction. RESULTS: Greater cumulative thermal doses and maximal temperatures were achieved with greater ODCs and longer laser activation periods. There were statistically significant differences between the thermal doses and temperature profiles of the laser settings evaluated. Temperatures were greater closer to the tip of the laser fiber. CONCLUSIONS: Laser energy and frequency play an important role in the thermal loads delivered during laser lithotripsy. Urologists must perform laser lithotripsy cautiously when aggressively treating large renal pelvis stones, as dangerous temperatures can be reached. To reduce the risk of causing thermal tissue injury, urologists should consider reducing their ODC and laser-on time.

3.
World J Urol ; 42(1): 157, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483596

ABSTRACT

PURPOSE: To evaluate the thermal profiles of the holmium laser at different laser parameters at different locations in an in vitro anatomic pelvicalyceal collecting system (PCS) model. Laser lithotripsy is the cornerstone of treatment for urolithiasis. With the prevalence of high-powered lasers, stone ablation efficiency has become more pronounced. Patient safety remains paramount during surgery. It is well recognized that the heat generated from laser lithotripsy has the potential to cause thermal tissue damage. METHODS: Utilizing high-fidelity, 3D printed hydrogel models of a PCS with a synthetic BegoStone implanted in the renal pelvis, laser lithotripsy was performed with the Moses 2.0 holmium laser. At a standard power (40 W) and irrigation pressure (100 cm H2O), we evaluated operator duty cycle (ODC) variations with different time-on intervals at four different laser settings. Temperature was measured at two separate locations-at the stone and away from the stone. RESULTS: Temperatures were highest closest to the laser tip with a decrease away from the laser. Fluid temperatures increased with longer laser-on times and higher ODCs. Thermal doses were greater with increased ODCs and the threshold for thermal injury was reached for ODCs of 75% and 100%. CONCLUSION: Temperature generation and thermal dose delivered are greatest closer to the tip of the laser fiber and are not dependent on power alone. Significant temperature differences were noted between four laser settings at a standardized power (40 W). Temperatures can be influenced by a variety of factors, such as laser-on time, operator duty cycle, and location in the PCS.


Subject(s)
Lasers, Solid-State , Lithotripsy, Laser , Lithotripsy , Humans , Holmium , Lasers, Solid-State/therapeutic use , Models, Anatomic
4.
Urolithiasis ; 52(1): 49, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520506

ABSTRACT

As laser technology has advanced, high-power lasers have become increasingly common. The Holmium: yttrium-aluminum-garnet (Ho:YAG) laser has long been accepted as the standard for laser lithotripsy. The thulium fiber laser (TFL) has recently been established as a viable option. The aim of this study is to evaluate thermal dose and temperature for the Ho:YAG laser to the TFL at four different laser settings while varying energy, frequency, operator duty cycle (ODC). Utilizing high-fidelity, 3D-printed hydrogel models of a pelvicalyceal collecting system (PCS) with a synthetic BegoStone implanted in the renal pelvis, laser lithotripsy was performed with the Ho:YAG laser or TFL. At a standard power (40W) and irrigation (17.9 ml/min), we evaluated four different laser settings with ODC variations with different time-on intervals. Temperature was measured at two separate locations. In general, the TFL yielded greater cumulative thermal doses than the Ho:YAG laser. Thermal dose and temperature were typically greater at the stone when compared away from the stone. Regarding the TFL, there was no general trend if fragmentation or dusting settings yielded greater thermal doses or temperatures. The TFL generated greater temperatures and thermal doses in general than the Ho:YAG laser with Moses technology. Temperatures and thermal doses were greater closer to the laser fiber tip. It is inconclusive as to whether fragmentation or dusting settings elicit greater thermal loads for the TFL. Energy, frequency, ODC, and laser-on time significantly impact thermal loads during ureteroscopic laser lithotripsy, independent of power.


Subject(s)
Lasers, Solid-State , Lithotripsy, Laser , Humans , Thulium , Holmium , Hydrogels , Kidney/surgery , Lasers, Solid-State/therapeutic use
5.
Curr Urol Rep ; 24(11): 491-502, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37736826

ABSTRACT

PURPOSE OF REVIEW: Surgical simulation has become a cornerstone for the training of surgical residents, especially for urology residents. Urology as a specialty bolsters a diverse range of procedures requiring a variety of technical skills ranging from open and robotic surgery to endoscopic procedures. While hands-on supervised training on patients still remains the foundation of residency training and education, it may not be sufficient to achieve proficiency for graduation even if case minimums are achieved. It has been well-established that simulation-based education (SBE) can supplement residency training and achieve the required proficiency benchmarks. RECENT FINDINGS: Low-fidelity modules, such as benchtop suture kits or laparoscopic boxes, can establish a strong basic skills foundation. Eventually, residents progress to high-fidelity models to refine application of technical skills and improve operative performance. Human cadavers and animal models remain the gold standard for procedural SBE. Recently, given the well-recognized financial and ethical costs associated with cadaveric and animal models, residency programs have shifted their investments toward virtual and more immersive simulations. Urology as a field has pushed the boundaries of SBE and has reached a level where unexplored modalities, e.g., 3D printing, augmented reality, and polymer casting, are widely utilized for surgical training as well as preparation for challenging cases at both the residents, attending and team training level.


Subject(s)
Internship and Residency , Robotic Surgical Procedures , Simulation Training , Urology , Humans , Education, Medical, Graduate , Urology/education , Curriculum , Clinical Competence , Computer Simulation
6.
Urology ; 176: 175-177, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36822244

ABSTRACT

Testicular compartment syndrome requires timely diagnosis and intervention but may be challenging. We present a case discussing the presentation and management of testicular compartment syndrome following testicular trauma in an 11-year-old male. The patient presented 24 hours after testicular trauma from a kick with testicular enlargement and sharp pain. Ultrasound showed markedly decreased blood flow and a reactive hydrocele. Testis-sparing intervention included emergent tunica albuginea incision, debridement, and tunica vaginalis flap.


Subject(s)
Compartment Syndromes , Testicular Diseases , Testicular Hydrocele , Testicular Neoplasms , Male , Humans , Child , Testis/diagnostic imaging , Testis/surgery , Testis/blood supply , Surgical Flaps
7.
Kidney Int ; 66(1): 262-7, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15200432

ABSTRACT

BACKGROUND: Nephrotic syndrome is associated with hypercholesterolemia, hypertriglyceridemia, and marked elevations of plasma low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Hypertriglyceridemia in nephrotic syndrome is accompanied by increased hepatic fatty acid synthesis, elevated triglyceride secretion, as well as lipoprotein lipase, VLDL-receptor, and hepatic triglyceride lipase deficiencies, which lead to impaired clearance of triglyceride-rich lipoproteins. Acyl CoA: diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl CoA to 1, 2-diacylglycerol to form triglyceride. Two distinct DGATs (DGAT-1 and DGAT2) have recently been identified in the liver and other tissues. The present study tested the hypothesis that the reported increase in hepatic triglyceride secretion in nephrotic syndrome may be caused by up-regulation of DGAT. METHODS: Male Sprague-Dawley rats were rendered nephrotic by two sequential injections of puromycin aminonucleoside (130 mg/kg on day 1 and 60 mg/kg on day 14) and studied on day 30. Placebo-treated rats served as controls. Hepatic DGAT-1 and DGAT-2 mRNA abundance and enzymatic activity were measured. RESULTS: The nephrotic group exhibited heavy proteinuria, hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, and marked elevation of VLDL concentration. Hepatic DGAT-1 mRNA, DGAT-1, and total DGAT activity were significantly increased, whereas DGAT-2 mRNA abundance and activity were unchanged in the nephrotic rats compared to the control animals. The functional significance of elevation of DGAT activity was illustrated by the reduction in microsomal free fatty acid concentration in the liver of nephrotic animals. CONCLUSION: Nephrotic syndrome results in up-regulation of hepatic DGAT-1 expression and activity, which can potentially contribute to the associated hypertriglyceridemia by enhancing triglyceride synthesis. Thus, it appears that both depressed catabolism and increased synthetic capacity contribute to hypertriglyceridemia of nephrotic syndrome.


Subject(s)
Acyltransferases/metabolism , Liver/enzymology , Nephrotic Syndrome/metabolism , Acyltransferases/genetics , Animals , Diacylglycerol O-Acyltransferase , Lipids/blood , Male , Nephrotic Syndrome/blood , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL