Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 113(23): 237001, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25526150

ABSTRACT

We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor (T_{c}∼8 K), which exhibits a tetragonal-to-orthorhombic structural transition at T_{s}∼90 K. At low temperature, we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T∼110 K, slightly above T_{s}, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.


Subject(s)
Iron Compounds/chemistry , Selenium/chemistry , Electric Conductivity , Photoelectron Spectroscopy/methods , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL