Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
J Chromatogr A ; 1728: 465018, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38815478

ABSTRACT

Municipal wastewater treatment plants are required to monitor persistent organic pollutants (POPs) in their wastewater treatment related discharges and to assess the impact of the discharges on the environment and public health. One tool for monitoring chlorinated organic pollutants particularly is a gas chromatographic (GC) system coupled to a pair of halogen-specific electron capture detectors (ECDs) with helium (He) as the mobile phase. He supplies, however, has become inconsistent and unreliable lately. In its place, N2 gas is evaluated in this study as a potential substitute for He in quantifying organochlorine pesticides, polychlorinated biphenyls, chlordane congeners and toxaphene in wastewater treatment related matrices (influent, effluent, benthic sediment, mussel tissue, and biosolids/sludge). N2 is inert, inexpensive and requires no additional hardware to incorporate into the basic functions of a GC-ECD. Our results show that, with the usual data quality controls (blank, laboratory control, matrix spike/duplicate and proficiency testing samples, and the fact that certified reference materials data met requirements), N2 can replace He for regulatory purposes. And when necessary, the N2-based retention times (tN) can be predicted reliably from He-based retention times (tHe), irrespective of column chemistry or POPs (here: tN = 1.90tHe + 0.04, R2 = 0.996).


Subject(s)
Helium , Nitrogen , Wastewater , Water Pollutants, Chemical , Chromatography, Gas/methods , Wastewater/chemistry , Wastewater/analysis , Helium/chemistry , Nitrogen/chemistry , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Persistent Organic Pollutants/chemistry , Hydrocarbons, Chlorinated/analysis , Polychlorinated Biphenyls/analysis , Animals , Bivalvia/chemistry , Pesticides/analysis
2.
PLoS One ; 19(4): e0301413, 2024.
Article in English | MEDLINE | ID: mdl-38635728

ABSTRACT

Incidence of endometrial cancer (EC) is rising in the developed world. The current standard of care, hysterectomy, is often infeasible for younger patients and those with high body mass index. There are limited non-surgical treatment options and a lack of biologically relevant research models to investigate novel alternatives to surgery for EC. The aim of the present study was to develop a long-term, patient-derived explant (PDE) model of early-stage EC and demonstrate its use for investigating predictive biomarkers for a current non-surgical treatment option, the levonorgestrel intra-uterine system (LNG-IUS). Fresh tumour specimens were obtained from patients with early-stage endometrioid EC. Tumours were cut into explants, cultured on media-soaked gelatin sponges for up to 21 days and treated with LNG. Formalin-fixed, paraffin embedded (FFPE) blocks were generated for each explant after 21 days in culture. Tumour architecture and integrity were assessed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). IHC was additionally performed for the expression of five candidate biomarkers of LNG resistance. The developed ex vivo PDE model is capable of culturing explants from early-stage EC tumours long-term (21 Days). This model can complement existing models and may serve as a tool to validate results obtained in higher-throughput in vitro studies. Our study provides the foundation to validate the extent to which EC PDEs reflect patient response in future research.


Subject(s)
Endometrial Neoplasms , Intrauterine Devices, Medicated , Female , Humans , Levonorgestrel/pharmacology , Endometrial Neoplasms/pathology , Hysterectomy , Biomarkers
3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108590

ABSTRACT

The "leaky gut" syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the "leaky gut" syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a "leaky gut" became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors.


Subject(s)
Inflammatory Bowel Diseases , Macrophages , Humans , Caco-2 Cells , THP-1 Cells , Macrophages/metabolism , Inflammation/metabolism , Cytokines/metabolism , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Interleukin-23/metabolism
4.
Cancers (Basel) ; 13(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34830795

ABSTRACT

BACKGROUND: Aotearoa, New Zealand, has one of the fastest-rising rates of endometrial cancer (EC) worldwide, increasing particularly in younger Maori and Pasifika women. There is a move towards using molecular profiling to direct treatment for each EC subtype. AIM: This study aimed to explore the molecular profiling of primary EC tissue in Aotearoa. METHODS: We used the PORTEC guidelines for the molecular subtyping of 90 patients' samples into four categories: POLE-mutated, p53 abnormal, mismatch repair deficient (MMRd) and no specific molecular profile (NSMP). The CTNNB1 mutation and L1CAM expression were also included in the analysis. POLE and CTNNB1 mutations were analysed using targeted next-generation sequencing (NGS). Novel mutations were assessed using VarSome. MMRd, L1CAM and p53 abnormalities were analysed using immunohistochemistry. RESULTS: In total, 15 samples were MMRd, 9 were p53 abnormal, 8 were POLE-mutated and the rest (56) were NSMP. Eleven samples had exon 3 CTNNB1 mutations and eleven novel POLE mutations were described. CONCLUSION: Surrogate markers for POLE mutations should be investigated. The validation of POLE variants and CTNNB1 mutations as part of an Aotearoa-based molecular panel is warranted.

5.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681798

ABSTRACT

Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2'-O-acetylsalicortin (1), 3'-O-acetylsalicortin (2), 2'-O-acetylsalicin (3), 2',6'-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.


Subject(s)
Inflammation/drug therapy , Salicylates/isolation & purification , Salix/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Chromatography, Liquid , Dinoprostone/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Pain/drug therapy , Phytotherapy/methods , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Salicylates/analysis , Salicylates/pharmacology , Tandem Mass Spectrometry
6.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34681279

ABSTRACT

To date, there have been rapidly spreading new SARS-CoV-2 "variants of concern". They all contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for immune escape. Here we report on the efficacy of common dandelion (Taraxacum officinale) to block protein-protein interaction of SARS-COV-2 spike to the human ACE2 receptor. This could be shown for the wild type and mutant forms (D614G, N501Y, and a mix of K417N, E484K, and N501Y) in human HEK293-hACE2 kidney and A549-hACE2-TMPRSS2 lung cells. High-molecular-weight compounds in the water-based extract account for this effect. Infection of the lung cells using SARS-CoV-2 spike D614 and spike Delta (B.1.617.2) variant pseudotyped lentivirus particles was efficiently prevented by the extract and so was virus-triggered pro-inflammatory interleukin 6 secretion. Modern herbal monographs consider the usage of this medicinal plant as safe. Thus, the in vitro results reported here should encourage further research on the clinical relevance and applicability of the extract as prevention strategy for SARS-CoV-2 infection in terms of a non-invasive, oral post-exposure prophylaxis.

7.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201817

ABSTRACT

The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed in this paper. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1ß- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1ß, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aspirin/pharmacology , COVID-19 Drug Treatment , COVID-19/immunology , Plant Extracts/pharmacology , Anti-Inflammatory Agents/chemistry , Benzyl Alcohols/metabolism , COVID-19/virology , Caco-2 Cells , Cyclooxygenase 2/drug effects , Cytokines/metabolism , Dinoprostone/metabolism , Glucosides/metabolism , HT29 Cells , Humans , Inflammation , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/immunology , Plant Bark/chemistry , Plant Extracts/chemistry , SARS-CoV-2/immunology
8.
Pathology ; 53(7): 818-823, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34158180

ABSTRACT

In ruminants Mycobacterium avium subspecies paratuberculosis (MAP) is the causative organism of a chronic granulomatous inflammatory bowel disease called Johne's disease (JD). Some researchers have hypothesised that MAP is also associated with Crohn's disease (CD), an inflammatory bowel disease in humans that shares some histological features of JD. Despite numerous attempts to demonstrate causality by researchers, direct microbiological evidence of MAP involvement in CD remains elusive. Importantly, it has not been possible to reliably and reproducibly demonstrate mycobacteria in the tissue of CD patients. Past attempts to visualise mycobacteria in tissue may have been hampered by the use of stains optimised for Mycobacterium tuberculosis complex (MTB) and the lack of reliable bacteriological culture media for both non-tuberculous mycobacteria (NTM) and cell-wall-deficient mycobacteria (CWDM). Here we describe a Ziehl-Neelsen (ZN) staining method for the demonstration of CWDM in resected tissue from patients with Crohn's disease, revealing the association of CWDM in situ with host tissue reactions, and posit this as a cause of the tissue inflammation. Using the ZN stain described we demonstrated the presence of CWDM in 18 out of 18 excised tissue samples from patients diagnosed as having Crohn's disease, and in zero samples out of 15 non-inflammatory bowel disease controls.


Subject(s)
Crohn Disease/microbiology , Mycobacterium/isolation & purification , Staining and Labeling/methods , Adolescent , Adult , Aged, 80 and over , Coloring Agents , Crohn Disease/pathology , Female , Humans , Male , Methylene Blue , Middle Aged , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Rosaniline Dyes , Young Adult
9.
Preprint in English | bioRxiv | ID: ppbiorxiv-435959

ABSTRACT

On 11th March 2020, coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, was declared as a global pandemic by the World Health Organization (WHO). To date, there are rapidly spreading new "variants of concern" of SARS-CoV-2, the United Kingdom (B.1.1.7), the South African (B.1.351) or Brasilian (P.1) variant. All of them contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for immune escape. Here we report on the efficacy of common dandelion (Taraxacum officinale) to block protein-protein interaction of spike S1 to the human ACE2 cell surface receptor. This could be shown for the original spike D614, but also for its mutant forms (D614G, N501Y, and mix of K417N, E484K, N501Y) in human HEK293-hACE2 kidney and A549-hACE2-TMPRSS2 lung cells. High molecular weight compounds in the water-based extract account for this effect. Infection of the lung cells using SARS-CoV-2 spike pseudotyped lentivirus particles was efficiently prevented by the extract and so was virus-triggered pro-inflammatory interleukin 6 secretion. Modern herbal monographs consider the usage of this medicinal plant as safe. Thus, the in vitro results reported here should encourage further research on the clinical relevance and applicability of the extract as prevention strategy for SARS-CoV-2 infection. Significance statementSARS-CoV-2 is steadily mutating during continuous transmission among humans. This might eventually lead the virus into evading existing therapeutic and prophylactic approaches aimed at the viral spike. We found effective inhibition of protein-protein interaction between the human virus cell entry receptor ACE2 and SARS-CoV-2 spike, including five relevant mutations, by water-based common dandelion (Taraxacum officinale) extracts. This was shown in vitro using human kidney (HEK293) and lung (A549) cells, overexpressing the ACE2 and ACE2/TMPRSS2 protein, respectively. Infection of the lung cells using SARS-CoV-2 pseudotyped lentivirus was efficiently prevented by the extract. The results deserve more in-depth analysis of dandelions effectiveness in SARS-CoV-2 prevention and now require confirmatory clinical evidence.

SELECTION OF CITATIONS
SEARCH DETAIL
...