Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014257

ABSTRACT

Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 chloride channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. We implement the fully polarizable forcefield AMOEBA in MD simulations of open and partially-open states of the hBest1. The AMOEBA forcefield models multipole moments up to the quadrupole; therefore, it captures induced dipole and anion-π interactions. By including polarization we demonstrate the key role that aromatic residues play in ion permeation and the functional advantages of pore asymmetry within the highly conserved hydrophobic neck of the pore. We establish that these only arise when electronic polarization is included in the molecular models. We also show that Cl⁻ permeation in this region can be achieved through hydrophobic solvation concomitant with partial ion dehydration, which is compensated for by the formation of contacts with the edge of the phenylalanine ring. Furthermore, we demonstrate how polarizable simulations can help determine the identity of ion-like densities within high-resolution cryo-EM structures. Crucially, neglecting polarization in simulation of these systems results in the localization of Cl⁻ at positions that do not correspond with their experimentally resolved location. Overall, our results demonstrate the importance of including electronic polarization in realistic and physically accurate models of biological systems.

2.
Biophys J ; 122(8): 1548-1556, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36945777

ABSTRACT

The functional properties of some biological ion channels and membrane transport proteins are proposed to exploit anion-hydrophobic interactions. Here, we investigate a chloride-pumping rhodopsin as an example of a membrane protein known to contain a defined anion binding site composed predominantly of hydrophobic residues. Using molecular dynamics simulations, we explore Cl- binding to this hydrophobic site and compare the dynamics arising when electronic polarization is neglected (CHARMM36 [c36] fixed-charge force field), included implicitly (via the prosECCo force field), or included explicitly (through the polarizable force field, AMOEBA). Free energy landscapes of Cl- moving out of the binding site and into bulk solution demonstrate that the inclusion of polarization results in stronger ion binding and a second metastable binding site in chloride-pumping rhodopsin. Simulations focused on this hydrophobic binding site also indicate longer binding durations and closer ion proximity when polarization is included. Furthermore, simulations reveal that Cl- within this binding site interacts with an adjacent loop to facilitate rebinding events that are not observed when polarization is neglected. These results demonstrate how the inclusion of polarization can influence the behavior of anions within protein binding sites and can yield results comparable with more accurate and computationally demanding methods.


Subject(s)
Chlorides , Rhodopsin , Chlorides/chemistry , Anions , Molecular Dynamics Simulation , Electronics
3.
Biophys J ; 121(11): 2014-2026, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35527400

ABSTRACT

Interactions between ions and water at hydrophobic interfaces within ion channels and nanopores are suggested to play a key role in the movement of ions across biological membranes. Previous molecular-dynamics simulations have shown that anion affinity for aqueous/hydrophobic interfaces can be markedly influenced by including polarization effects through an electronic continuum correction. Here, we designed a model biomimetic nanopore to imitate the polar pore openings and hydrophobic gating regions found in pentameric ligand-gated ion channels. Molecular-dynamics simulations were then performed using both a non-polarizable force field and the electronic-continuum-correction method to investigate the behavior of water, Na+, and Cl- ions confined within the hydrophobic region of the nanopore. Number-density distributions revealed preferential Cl- adsorption to the hydrophobic pore walls, with this interfacial layer largely devoid of Na+. Free-energy profiles for Na+ and Cl- permeating the pore also display an energy-barrier reduction associated with the localization of Cl- to this hydrophobic interface, and the hydration-number profiles reflect a corresponding reduction in the first hydration shell of Cl-. Crucially, these ion effects were only observed through inclusion of effective polarization, which therefore suggests that polarizability may be essential for an accurate description for the behavior of ions and water within hydrophobic nanoscale pores, especially those that conduct Cl-.


Subject(s)
Nanopores , Biomimetics , Hydrophobic and Hydrophilic Interactions , Ions , Sodium , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...