Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(10): 2590-2595, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28005379

ABSTRACT

The bioinspired design of ligands for nanoparticle coating with remarkable precision in controlling anisotropic connectivity and with universal binding efficiency to the membrane has made a great impact on nanoparticle self-assembly. We utilize the HIV-1-derived trans-activator of transcription peptide (TAT), a member of the cell-penetrating peptides, as a soft shell coating on gold nanoparticles (GNPs) and characterize TAT pepide-mediated binding behaviors of GNPs on the lipid membrane. Whereas the peptides enable GNPs to firmly attach to the membrane, the binding structures are driven by two electrostatic forces: the interparticle peptide repulsion and the peptide-membrane attraction. Although transmission electron microscopy images showed that the densities of membrane-embedded GNPs were almost equal, X-ray reflectivity revealed a significant difference in binding structures of GNPs along the surface normal upon the increase of charge densities (ϕ) of the membrane. In particular, GNPs were densely suspended at ϕ = 70% while they adopted an additional well-defined layer underneath the membrane at ϕ = 100%, in addition to a translocation of the initially bound particles into the membrane. The observed behaviors of GNPs manifest a 3D to 2D transformation of the self-assembled structures from the diffused state to the closely packed state with the increase in the charge density of the membrane. The present study also provides insights on the binding mechanisms of the cell-penetrating peptide-coated nanoparticles to the lipid membranes, which is a common theme of delivery systems in pharmaceutical research.


Subject(s)
Metal Nanoparticles , Biophysical Phenomena , Gold , HIV Infections , Lipids
2.
J Oleo Sci ; 65(5): 385-97, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27086998

ABSTRACT

Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differences that are associated with the structures and mechanical properties of the constituent molecules of the monolayer. The mechanisms and collapsed structures can differ owing to differences in experimental conditions, i.e., temperature, ion-content, the pH of subphase, or compression rate; in addition, the type of constituent molecules, i.e., biological lipids or chemical surfactants, has an effect. In this review, we compare studies concerning several aspects of collapse, from basic concepts and theoretical mechanisms to experimental visualization of the monolayer topography. In addition, techniques often employed to study this subject are discussed in this review.


Subject(s)
Surface-Active Agents/chemistry , Air , Hydrogen-Ion Concentration , Particle Size , Surface Properties , Temperature , Water/chemistry
3.
Langmuir ; 31(51): 13753-8, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26618452

ABSTRACT

It has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf. A 2006, 284-285, 166-174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure-area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as compared to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl(-) counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity.


Subject(s)
Amines/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Sodium Chloride/chemistry , Surface Properties , Water/chemistry
4.
Biophys J ; 108(8): 1977-86, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25902437

ABSTRACT

Cardiolipin (CL) is a complex phospholipid that is specifically found in mitochondria. Owing to the association of the CL levels with mitochondrial physiopathology such as in Parkinson's disease, we study the molecular effect of CL on membrane organization using model Langmuir monolayer, fluorescence microscopy, and x-ray reflectivity. We find that the liquid-expanded phase in membranes increases with increasing CL concentration, indicating an increase in the elasticity of the mixed membrane. The Gibbs excess free energy of mixing indicates that the binary monolayer composed of CL and DPPC is most thermodynamically stable at ΦCL = 10 mol%, and the stability is enhanced when the surface pressure is increased. Additionally, when ΦCL is small, the expansion of the membrane with increasing CL content was slower at higher surface pressure. These abnormal results are indicative of a folding structure being present before a collapsing structure, which was confirmed by using fluorescence microscopy and was characterized by using x-ray reflectivity with the electron density profile along the membrane's surface normal.


Subject(s)
Cardiolipins/chemistry , Elasticity , Lipid Bilayers/chemistry
5.
J Biomed Nanotechnol ; 9(7): 1250-3, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23909140

ABSTRACT

The electrowetting of water drops on a dielectric fluoropolymer film was studied experimentally. The dependence of the contact angles of the water drops on the applied voltage has been well explained in the low-voltage limit by using the classical Young-Lippmann theory. With this theory, the thicknesses of films coated on glass substrates by using a spin-coater were obtained indirectly by fitting the contact angle data and were confirmed by using X-ray reflectometry. The two sets of results showed a good agreement. In addition, we confirmed that the contact angle saturation at high voltage were consistent with Peykov's model.


Subject(s)
Materials Testing/methods , Models, Chemical , Polytetrafluoroethylene/chemistry , Polytetrafluoroethylene/radiation effects , Wettability/radiation effects , Computer Simulation , Electromagnetic Fields , Polytetrafluoroethylene/analysis , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...