Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Genet ; 64(4): 603-614, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37555917

ABSTRACT

Salt threatens rice cultivation in many countries. Hence, breeding new varieties with high salt tolerance is important.A panel of 2,391 rice accessions from the 3 K Rice Genome Project was selected to evaluate salt tolerance via the standard evaluation score (SES) in hydroponics under 60 mM NaCl at the seedling stage. Three sub-population panels including 1,332, 628, and 386 accessions from the original 2,391 ones were constructed based on low relatedness revealed by a phylogenetic tree generated by Archaeopteryx Tree. A genome-wide association study (GWAS) was conducted on the entire and sub-population panels using SES data and a selection of 5, 10, 20, and 40% of SNPs selected from the original 1,011,601 SNPs by filtering minor allele frequency > 5% and missing rate < 5%. To perform GWAS, three methods implemented in three different software packages were utilized.Using the integration of GWAS programs, a total of four QTLs associated with SES scores were identified in different panels. Some QTLs co-located with previously detected QTL-related traits. qSES1.1 was detected in three panels, qSES1.3 and qSES2.1 in two panels, and qSES3.1 in one panel through GWAS by all three methods used and selected SNPs. These four QTLs were selected to detect candidate genes. Combining gene-based association study plus haplotype analysis in the entire population and the three sub-populations let us shortlist three candidate genes, viz. LOC_Os01g23640 and LOC_Os01g23680 for qSES1.1, and LOC_Os01g71240 for qSES1.3 region affecting salt tolerance. The identified QTLs and candidate genes provided useful materials and genetic information for future functional characterization and genetic improvement of salt tolerance in rice.


Subject(s)
Oryza , Seedlings , Seedlings/genetics , Genome-Wide Association Study/methods , Oryza/genetics , Salt Tolerance/genetics , Phylogeny , Plant Breeding
2.
Front Plant Sci ; 14: 1197271, 2023.
Article in English | MEDLINE | ID: mdl-37575915

ABSTRACT

Rice cultivation is facing both salt intrusion and overuse of nitrogen fertilizers. Hence, breeding new varieties aiming to improve nitrogen use efficiency (NUE), especially under salt conditions, is indispensable. We selected 2,391 rice accessions from the 3K Rice Genomes Project to evaluate the dry weight under two N concentrations [2.86 mM - standard N (SN), and 0.36 mM - low N (LN)] crossed with two NaCl concentrations [0 (0Na) and 60 mM (60Na)] at the seedling stage. Genome-wide association studies for shoot, root, and plant dry weight (DW) were carried out. A total of 55 QTLs - 32, 16, and 7 in the whole, indica, and japonica panel - associated with one of the tested traits were identified. Among these, 27 QTLs co-localized with previously identified QTLs for DW-related traits while the other 28 were newly detected; 24, 8, 11, and 4 QTLs were detected in SN-0Na, LN-0Na, SN-60Na, and LN-60Na, respectively, and the remaining 8 QTLs were for the relative plant DW between treatments. Three of the 11 QTLs in SN-60Na were close to the regions containing three QTLs detected in SN-0Na. Eleven candidate genes for eight important QTLs were identified. Only one of them was detected in both SN-0Na and SN-60Na, while 5, 0, 3, and 2 candidate genes were identified only once under SN-0Na, LN-0Na, SN-60Na, and LN-60Na, respectively. The identified QTLs and genes provide useful materials and genetic information for future functional characterization and genetic improvement of NUE in rice, especially under salt conditions.

3.
Gut ; 72(7): 1340-1354, 2023 07.
Article in English | MEDLINE | ID: mdl-36631248

ABSTRACT

OBJECTIVE: Increasing evidence implicates mutation-induced protein misfolding and endoplasm reticulum (ER) stress in the pathophysiology of chronic pancreatitis (CP). The paucity of animal models harbouring genetic risk variants has hampered our understanding of how misfolded proteins trigger CP. We previously showed that pancreatic triglyceride lipase (PNLIP) p.T221M, a variant associated with steatorrhoea and possibly CP in humans, misfolds and elicits ER stress in vitro suggesting proteotoxicity as a potential disease mechanism. Our objective was to create a mouse model to determine if PNLIP p.T221M causes CP and to define the mechanism. DESIGN: We created a mouse model of Pnlip p.T221M and characterised the structural and biochemical changes in the pancreas aged 1-12 months. We used multiple methods including histochemistry, immunostaining, transmission electron microscopy, biochemical assays, immunoblotting and qPCR. RESULTS: We demonstrated the hallmarks of human CP in Pnlip p.T221M homozygous mice including progressive pancreatic atrophy, acinar cell loss, fibrosis, fatty change, immune cell infiltration and reduced exocrine function. Heterozygotes also developed CP although at a slower rate. Immunoblot showed that pancreatic PNLIP T221M misfolded as insoluble aggregates. The level of aggregates in homozygotes declined with age and was much lower in heterozygotes at all ages. The Pnlip p.T221M pancreas had increased ER stress evidenced by dilated ER, increased Hspa5 (BiP) mRNA abundance and a maladaptive unfolded protein response leading to upregulation of Ddit3 (CHOP), nuclear factor-κB and cell death. CONCLUSION: Expression of PNLIP p.T221M in a preclinical mouse model results in CP caused by ER stress and proteotoxicity of misfolded mutant PNLIP.


Subject(s)
Pancreatitis, Chronic , Mice , Humans , Animals , Pancreatitis, Chronic/genetics , Pancreas/metabolism , Acinar Cells/metabolism , Endoplasmic Reticulum Stress/genetics , Unfolded Protein Response , Endoplasmic Reticulum Chaperone BiP
SELECTION OF CITATIONS
SEARCH DETAIL
...