Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 36(11-12): 718-736, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35772791

ABSTRACT

Centrosomes are microtubule-organizing centers comprised of a pair of centrioles and the surrounding pericentriolar material. Abnormalities in centriole number are associated with cell division errors and can contribute to diseases such as cancer. Centriole duplication is limited to once per cell cycle and is controlled by the dosage-sensitive Polo-like kinase 4 (PLK4). Here, we show that PLK4 abundance is translationally controlled through conserved upstream open reading frames (uORFs) in the 5' UTR of the mRNA. Plk4 uORFs suppress Plk4 translation and prevent excess protein synthesis. Mice with homozygous knockout of Plk4 uORFs (Plk4 Δu/Δu ) are viable but display dramatically reduced fertility because of a significant depletion of primordial germ cells (PGCs). The remaining PGCs in Plk4 Δu/Δu mice contain extra centrioles and display evidence of increased mitotic errors. PGCs undergo hypertranscription and have substantially more Plk4 mRNA than somatic cells. Reducing Plk4 mRNA levels in mice lacking Plk4 uORFs restored PGC numbers and fully rescued fertility. Together, our data uncover a specific requirement for uORF-dependent control of PLK4 translation in counterbalancing the increased Plk4 transcription in PGCs. Thus, uORF-mediated translational suppression of PLK4 has a critical role in preventing centriole amplification and preserving the genomic integrity of future gametes.


Subject(s)
Cell Cycle Proteins , Centrioles , Animals , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrioles/genetics , Centrioles/metabolism , Germ Cells/metabolism , Mice , Open Reading Frames/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Genes Dev ; 35(23-24): 1551-1578, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34862179

ABSTRACT

Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.


Subject(s)
Microcephaly , Cell Cycle , Centrosome/metabolism , Humans , Microcephaly/genetics , Mitosis/genetics , Neurogenesis , Spindle Apparatus/genetics
3.
EMBO J ; 40(1): e106118, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33226141

ABSTRACT

Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53-mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53-mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non-centrosomal protein SMC5 is also TP53-dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.


Subject(s)
Centrosome/metabolism , Microcephaly/genetics , Microcephaly/metabolism , Mitosis/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Ubiquitin Thiolesterase/genetics , Animals , Apoptosis/genetics , Brain/pathology , Cell Death/genetics , Cell Proliferation/genetics , Cells, Cultured , Mice , Mice, Knockout , Mutation/genetics , Signal Transduction/genetics
4.
BMJ Open Diabetes Res Care ; 2(1): e000012, 2014.
Article in English | MEDLINE | ID: mdl-25452860

ABSTRACT

OBJECTIVE: Singapore is a microcosm of Asia as a whole, and its rapidly ageing, increasingly sedentary population heralds the chronic health problems other Asian countries are starting to face and will likely face in the decades ahead. Forecasting the changing burden of chronic diseases such as type 2 diabetes in Singapore is vital to plan the resources needed and motivate preventive efforts. METHODS: This paper describes an individual-level simulation model that uses evidence synthesis from multiple data streams-national statistics, national health surveys, and four cohort studies, and known risk factors-aging, obesity, ethnicity, and genetics-to forecast the prevalence of type 2 diabetes in Singapore. This comprises submodels for mortality, fertility, migration, body mass index trajectories, genetics, and workforce participation, parameterized using Markov chain Monte Carlo methods, and permits forecasts by ethnicity and employment status. RESULTS: We forecast that the obesity prevalence will quadruple from 4.3% in 1990 to 15.9% in 2050, while the prevalence of type 2 diabetes (diagnosed and undiagnosed) among Singapore adults aged 18-69 will double from 7.3% in 1990 to 15% in 2050, that ethnic Indians and Malays will bear a disproportionate burden compared with the Chinese majority, and that the number of patients with diabetes in the workforce will grow markedly. CONCLUSIONS: If the recent rise in obesity prevalence continues, the lifetime risk of type 2 diabetes in Singapore will be one in two by 2050 with concomitant implications for greater healthcare expenditure, productivity losses, and the targeting of health promotion programmes.

SELECTION OF CITATIONS
SEARCH DETAIL
...