Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 991865, 2022.
Article in English | MEDLINE | ID: mdl-36299785

ABSTRACT

Seagrass meadows provide valuable ecosystem services but are fragile and threatened ecosystems all over the world. This review highlights the current advances in seagrass research from Viet Nam. One goal is to support decision makers in developing science-based conservation strategies. In recent years, several techniques were applied to estimate the size of seagrass meadows. Independent from the method used, there is an alarming decline in the seagrass area in almost all parts of Viet Nam. Since 1990, a decline of 46.5% or 13,549 ha was found. Only in a few protected and difficult-to-reach areas was an increase observed. Conditions at those sites could be investigated in more detail to make suggestions for conservation and recovery of seagrass meadows. Due to their lifestyle and morphology, seagrasses take up compounds from their environment easily. Phytoremediation processes of Thalassia hemprichii and Enhalus acoroides are described exemplarily. High accumulation of heavy metals dependent on their concentration in the environment in different organs can be observed. On the one hand, seagrasses play a role in phytoremediation processes in polluted areas; on the other hand, they might suffer at high concentrations, and pollution will contribute to their overall decline. Compared with the neighboring countries, the total C org stock from seagrass beds in Viet Nam was much lower than in the Philippines and Indonesia but higher than that of Malaysia and Myanmar. Due to an exceptionally long latitudinal coastline of 3,260 km covering cool to warm water environments, the seagrass species composition in Viet Nam shows a high diversity and a high plasticity within species boundaries. This leads to challenges in taxonomic issues, especially with the Halophila genus, which can be better deduced from genetic diversity/population structures of members of Hydrocharitaceae. Finally, the current seagrass conservation and management efforts in Viet Nam are presented and discussed. Only decisions based on the interdisciplinary cooperation of scientists from all disciplines mentioned will finally lead to conserve this valuable ecosystem for mankind and biodiversity.

2.
Front Plant Sci ; 12: 658213, 2021.
Article in English | MEDLINE | ID: mdl-34220884

ABSTRACT

Human-induced land use in coastal areas is one of the main threats for seagrass meadows globally causing eutrophication and sedimentation. These environmental stressors induce sudden ecosystem shifts toward new alternative stable states defined by lower seagrass richness and abundance. Enhalus acoroides, a large-sized tropical seagrass species, appears to be more resistant toward environmental change compared to coexisting seagrass species. We hypothesize that reproductive strategy and the extent of seedling recruitment of E. acoroides are altered under disturbance and contribute to the persistence and resilience of E. acoroides meadows. In this research, we studied eight populations of E. acoroides in four lagoons along the South Central Coast of Vietnam using 11 polymorphic microsatellite loci. We classified land use in 6 classes based on Sentinel-2 L2A images and determined the effect of human-induced land use at different spatial scales on clonal richness and structure, fine-scale genetic structure and genetic diversity. No evidence of population size reductions due to disturbance was found, however, lagoons were strongly differentiated and may act as barriers to gene flow. The proportion and size of clones were significantly higher in populations of surrounding catchments with larger areas of agriculture, urbanization and aquaculture. We postulate that large resistant genets contribute to the resilience of E. acoroides meadows under high levels of disturbance. Although the importance of clonal growth increases with disturbance, sexual reproduction and the subsequent recruitment of seedlings remains an essential strategy for the persistence of populations of E. acoroides and should be prioritized in conservation measures to ensure broad-scale and long-term resilience toward future environmental change.

SELECTION OF CITATIONS
SEARCH DETAIL
...