Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Gels ; 10(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534602

ABSTRACT

The regulated and targeted administration of hydrophobic and hydrophilic drugs is both promising and challenging in the field of drug delivery. Developing a hydrogel which is responsive to dual stimuli is considered a promising and exciting research area of study. In this work, melamine functionalized poly-N-isopropyl acrylamide-co-glycidyl methacrylate copolymer has been developed by copolymerizing glycidyl methacrylate (GMA) monomer with N-isopropyl acrylamide (NIPAm) and further functionalized with melamine units (pNIPAm-co-pGMA-Mela). The prepared pNIPAm-co-pGMA-Mela copolymer hydrogel was characterized using various characterization techniques, including 1H NMR, FTIR, SEM, zeta potential, and particle size analysis. A hydrophobic drug (ibuprofen, Ibu) and hydrophilic drug (5-fluorouracil, 5-Fu) were selected as model drugs. Dual pH and temperature stimuli-responsive drug release behavior of the pNIPAm-co-pGMA-Mela hydrogel was evaluated under different pH (pH 7.4 and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions. Furthermore, the in vitro biocompatibility of the developed pNIPAm-co-pGMA-Mela copolymer hydrogel was determined on MDA-MB-231 cells. The pH and temperature-responsive drug delivery study results reveal that the pNIPAm-co-pGMA-Mela hydrogel system is responsive to both pH and temperature stimuli and exhibits about ~100% of Ibu and 5-Fu, respectively, released at pH 4.0/45 °C. Moreover, the MTT assay and hemocompatibility analysis results proved that the pNIPAm-co-pGMA-Mela hydrogel system is biocompatible and hemocompatible, suggesting that that it could be used for drug delivery applications. The experimental results suggest that the proposed pNIPAm-co-pGMA-Mela hydrogel system is responsive to dual pH and temperature stimuli, and could be a promising drug carrier system for both hydrophilic and hydrophobic drug delivery applications.

2.
Int J Biol Macromol ; 244: 125467, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37336380

ABSTRACT

The dual stimuli-responsive drug delivery system has attracted a lot of interest in controlled drug delivery to specific sites. The magnetic iron oxide nanoparticles integrated polyelectrolyte complex-based hydrogel (MPEC HG) system was developed in this work. First, magnetic nanoparticles were produced in situ in the synthetic polymer polyhexamethylene guanidine (PHMG). Furthermore, the natural biopolymer k-carrageenan (kCG) was employed to form the polyelectrolyte complex (PEC) through charge-balancing interaction between positively charged guanidine units and negatively charged sulfonate groups. Various characterization approaches were used to characterize the developed magnetic polyelectrolyte complex hydrogel (MPEC HG) system. Curcumin (Cur) was employed as a model bioactive agent to examine the drug loading and stimuli-responsive drug release efficiency of the MPEC HG system. Under the combined pH and temperature stimuli conditions (pH 5.0/42 °C), the developed hydrogel system demonstrated great drug loading efficiency (∼ 68 %) and enhanced drug release. Furthermore, the MPEC HG system's in vitro cytotoxicity behavior was investigated on a human liver cancer (HepG2) cell line, and the results revealed that the MPEC HG system is biocompatible. As a result, the MPEC HG system might be used for dual pH and temperature stimuli-responsive drug delivery applications in cancer therapy.


Subject(s)
Curcumin , Humans , Curcumin/chemistry , Polyelectrolytes/chemistry , Drug Carriers/chemistry , Carrageenan , Hydrogels/chemistry , Temperature , Drug Delivery Systems/methods , Drug Liberation , Hydrogen-Ion Concentration , Magnetic Phenomena
3.
Pharmaceutics ; 15(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37376080

ABSTRACT

Stimuli-responsive controlled drug delivery systems have attracted the attention of researchers in recent decades due to their potential application in developing efficient drug carriers that are responsive to applied stimuli triggers. In this work, we present the synthesis of L-lysine (an amino acid that combines both amine and carboxylic acid groups in a single unit) modified mesoporous silica nanoparticles (MS@Lys NPs) for the delivery of the anticancer bioactive agent (curcumin, Cur) to cancer cells. To begin, mesoporous silica hybrid nanoparticles (MS@GPTS NPs) with 3-glycidoxypropyl trimethoxy silane (GPTS) were synthesized. The L-lysine groups were then functionalized onto the mesopore channel surfaces of the MS@GPTS NPs through a ring-opening reaction between the epoxy groups of the GPTS and the amine groups of the L-lysine units. Several instrumental techniques were used to examine the structural properties of the prepared L-lysine-modified mesoporous silica nanoparticles (MS@Lys NPs). The drug loading and pH-responsive drug delivery behavior of MS@Lys NPs were studied at different pH levels (pH 7.4, 6.5, and 4.0) using curcumin (Cur) as a model anticancer bioactive agent. The MS@Lys NPs' in vitro cytocompatibility and cell uptake behavior were also examined using MDA-MB-231 cells. The experimental results imply that MS@Lys NPs might be used in cancer therapy as pH-responsive drug delivery applications.

4.
Gels ; 9(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37232955

ABSTRACT

The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices.

5.
Pharmaceutics ; 15(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36986656

ABSTRACT

A mesoporous silica-based drug delivery system (MS@PNIPAm-PAAm NPs) was synthesized by conjugating the PNIPAm-PAAm copolymer onto the mesoporous silica (MS) surface as a gatekeeper that responds to temperature and pH changes. The drug delivery studies are carried out in vitro at different pH (7.4, 6.5, and 5.0) and temperatures (such as 25 °C and 42 °C, respectively). The surface conjugated copolymer (PNIPAm-PAAm) acts as a gatekeeper below the lower critical solution temperature (LCST) (<32 °C) and as a collapsed globule structure above LCST (>32 °C), resulting in controlled drug delivery from the MS@PNIPAm-PAAm system. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular internalization results support the prepared MS@PNIPAm-PAAm NPs being biocompatible and readily taken up by MDA-MB-231 cells. The prepared MS@PNIPAm-PAAm NPs, with their pH-responsive drug release behavior and good biocompatibility, could be used as a drug delivery vehicle where sustained drug release at higher temperatures is required.

6.
Photoacoustics ; 29: 100456, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36785577

ABSTRACT

In this paper, we propose an efficient label-free in vivo photoacoustic (PA) imaging of melanoma using a condensed near infrared-I (NIR-I) supercontinuum light source. Although NIR-II spectral window is advantageous such as longer penetration depth compared to the NIR-I region, supercontinuum light sources emitting both NIR-I and NIR-II region could lower the efficiency to target melanoma because of low optical power density in the melanoma's absorption spectra. To exploit efficient in vivo PA imaging of melanoma, we demonstrated the light source emitting from visible (532-600 nm) to NIR-I (600-1000 nm) by optimizing stimulated Raman scattering induced supercontinuum generation. The melanoma's structure is successfully differentiated from blood vessels at a high pulse energy of 2.5 µJ and a flexible pulse repetition rate (PRR) of 5-50 kHz. The proposed light source with the microjoules energies and tens of kHz of PRR can potentially accelerate clinical trials such as early diagnosis of melanoma.

7.
Environ Res ; 224: 115439, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36801234

ABSTRACT

The incorporation of active functional groups into the mesoporous organosilica hybrid materials is efficient for various applications. A newly designed mesoporous organosilica adsorbent was prepared using diaminopyridyl groups bridged-(bis-trimethoxy)organosilane (DAPy) precursor by using Pluronic P123 as structure directing template via sol-gel co-condensation method. The hydrolysis reaction of DAPy precursor and tetraethyl orthosilacate (TEOS) with a DAPy content of about 20 mol% to TEOS were incorporated into the mesopore walls of the mesoporous organosilica hybrid nanoparticles (DAPy@MSA NPs). Low-angle XRD and FT-IR, N2 adsorption-desorption analysis, SEM, TEM, and TG analysis were used to characterize the synthesized DAPy@MSA NPs. The DAPy@MSA NPs exhibit an order mesoporous structure with a high surface area, mesopore size and pore volume of approximately ∼465 m2/g, 4.4 nm and 0.48 cm3/g, respectively. The pyridyl groups integrated DAPy@MSA NPs showed the selective adsorption of Cu2+ ions from the aqueous medium by metal-ligand complex coordination of Cu2+ ions with the integrated pyridyl groups and the pendant hydroxyl (-OH) functional groups present into the mesopore walls of the DAPy@MSA NPs. In the presence of other competitive metal ions (Cr2+, Cd2+, Ni2+, Zn2+, and Fe2+), the DAPy@MSA NPs showed relatively high adsorption of Cu2+ ions (276 mg/g) from aqueous solution as compared to the other competitive metal ions at the same concentration (100 mg/L) of initial metal ion solution.


Subject(s)
Copper , Nanoparticles , Copper/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Ions , Water
8.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408673

ABSTRACT

The voltage-gated proton channel Hv1 has important roles in proton extrusion, pH homeostasis, sperm motility, and cancer progression. The Hv1 channel has also been found to be highly expressed in cell lines and tissue samples from patients with breast cancer. A high-resolution closed-state structure has been reported for the mouse Hv1 chimera channel (mHv1cc), solved by X-ray crystallography, but the open-state structure of Hv1 has not been solved. Since Hv1 is a promising drug target, various groups have proposed open conformations by molecular modeling and simulation studies. However, the gating mechanism and the open-state conformation under the membrane potential are still debate. Here, we present a molecular dynamics study considering membrane potential and pH conditions. The closed-state structure of mHv1cc was used to run molecular dynamics (MD) simulations with respect to electric field and pH conditions in order to investigate the mechanism of proton transfer. We observed a continuous hydrogen bond chain of water molecules called a water-wire to be formed through the channel pore in the channel opening, triggered by downward displacement of the S2 helix and upward movement of the S4 helix relative to other helices. Due to the movement of the S2 and S4 helices, the internal salt bridge network was rearranged, and the hydrophobic gating layers were destroyed. In line with previous experimental and simulation observations, our simulation results led us to propose a new gating mechanism for the Hv1 proton channel, and may provide valuable information for novel drug discovery.


Subject(s)
Molecular Dynamics Simulation , Protons , Animals , Humans , Ion Channel Gating , Ion Channels/metabolism , Male , Mice , Sperm Motility , Water/chemistry
9.
Gels ; 9(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36661802

ABSTRACT

Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields.

10.
Polymers (Basel) ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36616517

ABSTRACT

The therapeutic delivery system with dual stimuli-responsiveness has attracted attention for drug delivery to target sites. In this study, we used free radical polymerization to develop a temperature and pH-responsive poly(N-isopropyl acrylamide)-co-poly(acrylamide) (PNIPAM-co-PAAm). PNIPAm-co-PAAm copolymer by reacting with N-isopropyl acrylamide (NIPAm) and acrylamide (Am) monomers. In addition, the synthesized melamine-glutaraldehyde (Mela-Glu) precursor was used as a cross-linker in the production of the melamine cross-linked PNIPAm-co-PAAm copolymer hydrogel (PNIPAm-co-PAAm-Mela HG) system. The temperature-responsive phase transition characteristics of the resulting PNIPAM-co-PAAm-Mela HG systems were determined. Furthermore, the pH-responsive drug release efficiency of curcumin was investigated under various pH and temperature circumstances. Under the combined pH and temperature stimuli (pH 5.0/45 °C), the PNIPAm-co-PAAm-Mela HG demonstrated substantial drug loading (74%), and nearly complete release of the loaded drug was accomplished in 8 h. Furthermore, the cytocompatibility of the PNIPAm-co-PAAm-Mela HG was evaluated on a human liver cancer cell line (HepG2), and the findings demonstrated that the prepared PNIPAm-co-PAAm-Mela HG is biocompatible. As a result, the PNIPAm-co-PAAm-Mela HG system might be used for both pH and temperature-stimuli-responsive drug delivery.

11.
Molecules ; 26(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802244

ABSTRACT

The authors wish to make the following corrections to the paper [...].

12.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494225

ABSTRACT

Chitosan (CS) is a well-known stabilizer for metal nanoparticles in biomedical engineering. However, very few studies have explored other important roles of CS including reducing, shape-directing, and size-controlling. This review aims to provide the latest and most comprehensive overview of the roles of CS in the green synthesis of metal nanoparticles for biomedical applications. To the best of our knowledge, this is the first review that highlights these potentialities of CS. At first, a brief overview of the properties and the bioactivity of CS is presented. Next, the benefits of CS for enhancing the physicochemical behaviors of metal nanoparticles are discussed in detail. The representative biomedical applications of CS-metal nanoparticles are also given. Lastly, the review outlines the perceptual vision for the future development of CS-metal nanoparticles in the biomedicine field.

13.
Physiol Meas ; 41(12): 125011, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32674080

ABSTRACT

OBJECTIVE: The aim of this study was to monitor the physiological changes and cytotoxic effects of exogenous contrast agents during photoacoustic imaging (PAI) and photothermal therapy (PTT). In this paper, a low-power telemetric device for mouse vital signs monitoring was designed and demonstrated. APPROACH: The power consumption was optimized through hardware and software co-design with a 17% increased operating time compared with typical operation. To demonstrate the feasibility of the monitoring device, PAI and PTT experiments with chitosan-polypyrrole nanocomposites (CS-PPy NCs) as exogenous contrast agents were conducted. Herein, the physiological variation in groups of mice with different CS-PPy NC concentrations was observed and analyzed. MAIN RESULTS: The experimental results indicated the influence of CS-PPy NCs and anesthesia on mouse vital signs in PAI and PTT. Additionally, the association between core temperature, heart rate, and saturation of peripheral oxygen (SpO2) during PAI and PTT was shown. The strong near-infrared absorbance of exogenous contrast agents could account for the increase in mouse core temperature and tumor temperature in this study. Furthermore, high cross-correlation values between core temperature, heart rate, and SpO2 were demonstrated to explain the fluctuation of mouse vital signs during PAI and PTT. SIGNIFICANCE: A design of a vital signs monitoring device, with low power consumption, was introduced in this study. A high cross correlation coefficient of mouse vital signs and the effects of CS-PPy NCs were observed, which explained the mouse physiological variation during the PAI and PTT experiments.


Subject(s)
Photoacoustic Techniques , Photothermal Therapy , Telemetry/instrumentation , Vital Signs , Animals , Mice , Polymers , Pyrroles
14.
Polymers (Basel) ; 11(10)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615133

ABSTRACT

Wound infection is a big issue of modern medicine because of multi-drug resistance bacteria; thus, developing an advanced therapy is curial. Photothermal therapy (PTT) is a newly noninvasive strategy that employs PTT agents to transfer near-infrared (NIR) light energy into heat to kill bacterial pathogens. In this work, the PTT agent-containing dressing was developed for the first time to treat the wound infection. Palladium nanoparticles (PdNPs) were chosen as PTT agents because of their high stability, good biocompatibility, excellent photothermal property, and simple-green preparation. With the flexibility and wettability, highly porous membrane chitosan/polyvinyl alcohol (CS/PVA) membrane was chosen as the dressing. The prepared wound dressings exhibited excellent biocompatibility, high porosity, a high degree of swelling, high moisture retention, and high photothermal performance. The treatment of PdNPs loading CS/PVA dressing (CS/PVA/Pd) and laser irradiation killed most of the bacteria in vitro. The proposed PTT agent containing wound dressing introduces a novel strategy for the treatment of wound infection.

15.
Braz J Microbiol ; 50(3): 791-805, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31250405

ABSTRACT

Biofilm formation is one of the resistance mechanisms of Pseudomonas aeruginosa against antimicrobial compounds. Biofilm formation also characterizes for the infection and pathogenesis of P. aeruginosa, along with production of various virulence factors. With recent development of nanotechnology, the present study aims to employ the synthetic iron nanoparticle (FeOOH-NP) as an active agent to inhibit the formation of P. aeruginosa biofilm. The FeOOH-NP was synthesized and characterized with rod shape and average size of 40 nm. Inhibition of biofilm formation by the FeOOH-NP is in a concentration-dependent manner, with inhibition of biofilm formation increased as the FeOOH-NP concentration increased. Microscopic observations also confirmed the disruption of the biofilm architecture in the presence of the FeOOH-NP. In addition, the presence of the FeOOH-NP was also found to modulate bacterial motility as well as some other important virulence factors produced simultaneously with biofilm formation. These findings provide insights to anti-biofilm effect of a new iron NP, contributing to the search for an effective agent to combat P. aeruginosa infections resulted from biofilm formation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biofilms/drug effects , Iron/pharmacology , Pseudomonas aeruginosa/drug effects , Virulence Factors/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Iron/chemistry , Nanoparticles/chemistry , Pseudomonas aeruginosa/physiology , Virulence Factors/genetics
16.
Sensors (Basel) ; 19(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717095

ABSTRACT

The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has five spherical surfaces with equal area and connected continuously to have the same energy level at focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm. The designed MFP transducer had a center frequency of 50 MHz and a -6 dB bandwidth of 68%. The wire phantom test was conducted to study and demonstrate the advantages of this novel design. The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper imaging depth applications.

17.
Carbohydr Polym ; 205: 340-352, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30446113

ABSTRACT

This study reported a newly developed green synthesis method using chitosan and vitamin C to prepare porous flower-shaped palladium nanoparticles. We found that chitosan not only worked as a stabilizer but also as a size-control agent for the synthesis of these nanoparticles. The growth model of flower-shaped palladium nanoparticles was proposed to interpret mechanistic understanding. The obtained nanoparticles showed good biocompatibility and strong near-infrared absorption. The nanoparticles were successfully demonstrated to be highly efficient for both in vitro photothermal therapy and in vitro photoacoustic imaging.

18.
Nanomaterials (Basel) ; 10(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892149

ABSTRACT

Palladium nanoparticles (PdNPs) have intrinsic features, such as brilliant catalytic, electronic, physical, mechanical, and optical properties, as well as diversity in shape and size. The initial researches proved that PdNPs have impressive potential for the development of novel photothermal agents, photoacoustic agents, antimicrobial/antitumor agents, gene/drug carriers, prodrug activators, and biosensors. However, very few studies have taken the benefit of the unique characteristics of PdNPs for applications in the biomedical field in comparison with other metals like gold, silver, or iron. Thus, this review aims to highlight the potential applications in the biomedical field of PdNPs. From that, the review provides the perceptual vision for the future development of PdNPs in this field.

19.
Sci Rep ; 8(1): 8809, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891947

ABSTRACT

Cancer theragnosis agents with both cancer diagnosis and therapy abilities would be the next generation of cancer treatment. Recently, nanomaterials with strong absorption in near-infrared (NIR) region have been explored as promising cancer theragnosis agents for bio-imaging and photothermal therapy (PTT). Herein, we reported the synthesis and application of a novel multifunctional theranostic nanoagent based on hyaluronan (HA)-coated FeOOH@polypyrrole (FeOOH@PPy) nanorods (HA-FeOOH@PPy NRs) for photoacoustic imaging (PAI)-guided PTT. The nanoparticles were intentionally designed with rod-like shape and conjugated with tumor-targeting ligands to enhance the accumulation and achieve the entire tumor distribution of nanoparticles. The prepared HA-FeOOH@PPy NRs showed excellent biocompatible and physiological stabilities in different media. Importantly, HA-FeOOH@PPy NRs exhibited strong NIR absorbance, remarkable photothermal conversion capability, and conversion stability. Furthermore, HA-FeOOH@PPy NRs could act as strong contrast agents to enhance PAI, conducting accurate locating of cancerous tissue, as well as precise guidance for PTT. The in vitro and in vivo photothermal anticancer activity results of the designed nanoparticles evidenced their promising potential in cancer treatment. The tumor-bearing mice completely recovered after 17 days of PTT treatment without obvious side effects. Thus, our work highlights the great potential of using HA-FeOOH@PPy NRs as a theranostic nanoplatform for cancer imaging-guided therapy.


Subject(s)
Hyperthermia, Induced/methods , Molecular Targeted Therapy/methods , Nanocomposites/administration & dosage , Nanotubes , Neoplasms, Experimental/therapy , Photoacoustic Techniques/methods , Phototherapy/methods , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Models, Biological , Nanocomposites/chemistry , Theranostic Nanomedicine/methods , Treatment Outcome
20.
J Nanosci Nanotechnol ; 18(1): 583-590, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768884

ABSTRACT

Magnetoliposomes (ML) have been emerging as a novel multifunctional nanoparticle with a wide range of biomedical and therapeutic applications over the past decade. Although the ML system has shown excellent performances, the stability and lipid peroxidation of liposomal components are still remaining as key issues and need to be solved for intensive applications. Changing zeta potential of nanoparticles' surface can be seen as a potential way to achieve the stable dispersion. In this work, we have employed the positive charged, abundant and cheap chitosan to coat ML in order to change the zeta potential of the ML system and examined the stability of chitosan@magnetoliposomes (CML) in long-term storage. The combining of pH-sensitive chitosan with temperature-sensitive phospholipid formed a novel pH- and temperature-sensitive nanoparticles which can be promisingly used as controllable drug release applications. These novel CML with chitosan thin shells showed excellent stability in long-term storage; meanwhile, the bare ML sample showed aggregations and forming micrometer-size particles. The CML system can achieve a drug encapsulation efficiency of nearly 50% and an enhanced drug release behavior under pH 5 at 45 °C.


Subject(s)
Chitosan , Liposomes , Nanoparticles , Drug Carriers , Drug Liberation , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...